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ABSTRACT

In this report, the simulation cof ocean wave kinematics by
digital convolution technigues is presented. 1In deep water,

the vertical attenuation and horizontal propagation of ocean
waves are solved analytically. 1In shallow water, the vertical-
attenuation and horizontal-propagation problems are solved using
the fast Fourier transform. It is shown that the convolution
integrals reqguired to simulate irregular waves are more efficient
than summing sinusoids. Guidelines for the processing of real
wave data are established. The technigue is validated by com-
paring data acquired in a wave tank with the simulated result.
Applications of this method are demonstrated with example

problems.

ror information concerning computer programs which implement
these simulation technigues, contact:

Professor J. Kim Vandiver
MIT Room 5-222

Cambridge, MA (02139
(617) 253-4366



CHAPTER 1

ANALYSIS OF OCEAN WAVES IN THE TIME DOMAIN

1.1 THE FREQUENCY DOMAIN VERSUS THE TIME DOMAIN

Time—domain analysis can be very useful for the design
of offshore structures. However, time—domain analysis is
not performed very often because the software in use today
is inefficient. Instead frequency-domain analysis 1s used.
A frequency-domain analysis is made efficlent by the many
linearizations that are imposed. The metions, exciting and
restraining forces, and wave kinematlcs are linearized to
perform a frequency—-domain analysls. But these
linearizations make the frequency domaln a worse model of
reality than the time domain because the time domain does
model nonlinearities. Also, physically, the time domain 1is
a better cholce than the frequency domain because natural
phenomena change with time, not with frequency. Both the
frequency domain and time domain have certain advantages and

disadvantages which make the proper choice for analyslis

extremely lmportant.
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The response of an offshore structure to a storm Iis
very nonlinear. Since the frequency doﬁain cannot model
nonlinearities, it cannot model response to storms. It
models the response of an offshore structure under normal
operating conditions. It is best used during preliminary
design, in the early stages of the design spiral, when there
are many possible solutions. It is an efficlent and
inexpensive way of eliminating poor design choices. Unlike
the frequency domain, the time domain can model the response
of an offshore structure to a storm. It 1is best used durlng
final design, near the end of the design spiral, when only
one or two designs are being considered. Poor design
choices that are not found by a frequency—domain analysis

can be found by a time-domain analysis.

Together with model tests, the time domain can be a
valuable method of design. If it 1is used properly, it will
certainly help to avold accldents such as befell the Ocean
Ranger and Glomar Explorer. This is especiallly important

as the search for oll 1s extended into deeper and harsher

environments.

Time-domain analysis wlll become more attractive as 1t
becomes more efflclent. Its Iinefficliency leads to very
expensive and extremely long computer simulations. One of
the leading contributors to this Iinefficiency 1s the

algorithm which models Iirregular seas. This paper will
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demonstrate an efficient method for medeling irregular seas.

1.2 APPLICATIONS OF TIME-DOMAIN ANALYSIS

Time-domain analysis of an offshore structure's
response to ocean waves can ldentify poor deslgn cholces.
Specifically, the ocean englneer 1s most interested 1in
preventing structural fallure. Other deslgn objectives
include flood prevention, station-keeping abllity, and good
seakeeping characterlstics. Time—-domain analysis can help
meet all of these design objectives. Useful applications of
time-domain analysis include dynamic response of jackets,
hybrid towers, guyed towers, and risers. Other applications
include seakeeping response of semlsubmersibles and
tenslon-leqg platforms. As seen in Figure 1, all of these
structures are made of slender cylinders. In general,
Morison's equation can be used to model the dynamic response
of a cylinder to an ocean wave when the cylinder's diameter
is smaller than <the wave's length. The appllcation of
Morison's equation is controversial. Yet, for the problems
we want to solve, Morison's equatlon glives results which are

in good agreement with experiments.
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1.3 MCRISCON'S EQUATION

For forces normal to a cylinder's axis, Morison's

equation can be expressed as (Figure 2)
5 = CaJoV'ﬂ/,, -x,) ,:-Ja?‘ﬂ,} * &y E’..)oé/%,,"%//ﬂﬁ-%) (1.1)

where the variables have the following definitions:

—

1) 7» 1s the vector of hydrodynamic forces
normal to the cylinder's axis,

2) Cq is the added-mass coefficient
and ¢y is the viscous-drag coefficlient for flow
normal to the cylinder's axis.

3) j) is the mass density of water,

4) 7 is the volume of the cylinder,

5) A is the projected area In the direction
of the normal,and

6) 4, . j% . Uy and JX, are normal -
components of the " water-particle veloclty. the
cylinder's velocity, the water-particle
acceleration, and the cylinder's acceleration

respectively.

The first term in the equation is called the added-mass
force. This term models forces  proportional to
acceleration. The second term models forces proportional to
the gradient of pressure. The last term models viscous
forces. Morison's equation does not model diffraction.
However, Morison's equation can be a good model of the
hydrodynamic forces acting on cylinders with dlameters less

than one-quarter of the wave length. Furthermore, unlike
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most potential flow models, Morison's equation dces

viscous forces.

of the total force acting on offshore structures.

Page 1-5

model

These forces can be the greatest'proportion

Similiarly, the hydrodynamic forces acting in-line with

a cylinder's axls can be expressed as (Figure 3}

ey

- = - i s
Fo= Cqp P ldy=dy )+ BAT Cotf-ph =7, flty - )

where the varlables have the followlng deflnitions:

1) 7z 1s the vector of hydrodynamic forces
in-line with the cylinder's axls,

2) C, 1s the added-mass coefficient of an
equivalent sphere having a cross—sectlonal area
equal to the area of the end of the cylinder
and Cg¢ 1s the viscous drag coefflclent of an
equivalent disc that has the same area as the end
of the cylinder,

—
3) ¢ 1s the unit vector Iin-line with the
cylinder's axls,

4) /4 1is the dynamlc component of pressure,
S) Y/ 1s the volume of the equivalent sphere,

6) 4 1s the area of the end of the cylinder,

and
_ T =
N Uy o Xp o Uy and Az are in-line
components of the water-particle velccity, the
cylinder's veloclty, the water—particle

acceleration, and the cylinder's acceleratlion
respectively.

The water—-particle velocitles, acceleratlions,

(1.2)

and

pressures are required in Morison's equation. Furthermore,

the

free-suface elevation must be %known so that

the
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hydrodynamic forces acting on all submerged cylinders can be
calculated. Presently, the algorithm used to cémpute these
qﬁantities is very 1inefficient. In this paper, a more
efficient method fof computing these gquantlties will be

developed.

1.4 SUMMARY OF CHAPTER ONE

The response of offshore structures to ocean waves can
be analyzed in either the frequency domain or time domain.
Frequency-domain analysis is best used during preliminary
design, whereas tilme-domain analysls 1s best used during
final design. Time-domaln analyslis is not used as often as
it should be because it is inefficient, but it can become
more efficlent. For certaln offshore structures, Morison's
equation can be used to modei the hydrodynamic forces.
Presently, the algorithm used to compute the wave properties
required by Morison's equation is very inefficient. A more
efficient method will be developed in this paper. First,
Alry wave theory will be reviewed. Then a theory of
irregular waves will be developed which 1is based on Alry
wave theory. This theory 1is more efficlent than what 1s

‘used today.



CHAPTER 2
REGULAR AND IRREGULAR WAVES

2.1 AIRY WAVE THECRY

Subject to certain limitations, Aliry wave theory can be
a very useful model cof ocean waves. To understand those
limitations, we must review the theory's derlivation. Our
final objective will be a model for irregular waves. Since
irregular waves are a superpesition of regular waves, we
will use many Airy waves to simulate Irregular waves.
Therefore, the theory of 1irregular waves which we will
develop will have limitations simlillar to those of Alry

waves.

We will define our coordinate system such that the
Z-axis 1s positive up and the X-axis poslitive to the right.
Furthermore, we will fix the origin at the mean waterline

(Figure 4).
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The first assumption we will make 1s that the fluld 1is

1nvisc1d-or ideal.
=0, ' C(2.1)

where »~ 1ls the kinematlc viscosity. Since we have assumed
an 1deal fluld, there will be no energy disslipation due to
viscous damplng. This 1s wvalld because we are only
interested ln waves that travel short distances in the
neighborhood of the offshore structure. For these short

distances, we do not expect that the viscous damping will

have a significant effect.

The second assumption we will make is that the fluid 1s

incompressible.
dr = 9f = 2P = - -. (2.2)
2y T &

where ¢ 1is the density of the fluld. Intultively, thils
seems to be a reasonable assumptlon. However, 1t is
possible to model the compressibility of the fluid. In
fact., even for ﬁater, compressibility can significantly

affect added-mass and wave-damping calculations.

The third assumption we wlll make is that the fluld 1is
irrotational.

7xv | (2.3)

. —
where P’ is the del operator and Y/ is the fluid particle
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velocity vector. This important assumpticn enables us to
express the velocity field in terms of the gradlent of a

scalar function 25 .

—

v = 7@ | (2.4)

where .QF is defined as the veloclity potential. Le

Mehaute in his book An Introduction to Hydroedynamics and
Water Wayes, gives a good discussion of irrotational motion:

A deep water swell, i.e., wave generated Dby
wind traveling out of the generating area, is
probably the motion which most closely approaches
the condition of irrotationality. But under wind
action the free surface shearlng stress Induces
rotationality (and turbulence)} in the direction of
wave travel... Also, in shallow water, the bottom
friction Iinduces rotaticnality.... Rotatlonality
at the crest in the direction of wave travel will
reduce the limit wave steepness... Rotatlonallty
in the oposite direction will theoretically
increase the limit wave steepness.

Using these arguments, we expect our theory to become less
valid as the wave becomes steeper and the water shallower.
These are limitations to the theory we propose. However, as

we will soon discover, they are not very strong limitations.

By the continuity principle, equal .amounts of fluid

must enter and exit a control volume. Therefore,
7iZ = o in the fluid. (2.5)

This equation is called Laplace's equation. It 1s the

governing differential equation.



REGULAR AND IRREGULAR WAVES : Page 2-4

We must solve Laplaée's equation and alsc satisfy the
free—surface and bottom—boundary conditions. The
bottom—boundary condition is that no fluid can move across

the bottom — the normal component of fluld velocity must be

Zero.

_gg =O. on z=-h, (2.6)

where h is the water depth. This boundary condition does
not allow for sloped bottoms. However, 1in the neighborhood
of the offshore structure the bottom willl be horizontal.
For rigid, hard, horizontal bottoms, this boundary conditlion

is exact.

The kinematic boundary condition on the free surface lis
that the fluid particles near the free surface can only move
tangentially to the free surface. The nonlinear boundary

conditlion 1s

XE-Y)= =97 - JVIZ é@?;= . =

where FEE is the substantial derivative, and 7 is the
free—surface elevation. This equation can be linearized 1if
we assume that that the product of 77 and égg-is very small
x
compared to the other terms in the equation. (This is the
fourth assumption we have made.) This is a limitation on the
steepness of the waves we can model because %;? and é%g:are
s o
measures of the slope of the wave. It 1s a much stronger
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limitatlen on steepness than that due to lrrotatlonallity.
The linearized kinematic boundary condition on the free

sur face becomes

%"’%‘Z’ | on z=0. (2.8)

Unlike the fully nonlinear boundary condition, the linear
boundary condition 1is satisfied on the mean waterline.
Since the steepness of the wave is small, the potentlial, the
free-surface elevation, and their derivatives evaluated on
the free surface can be expanded 1in a Taylor serles

expansion about the mean waterllne.

The dynamic boundary condition on the free surface 1is
that the pressure must be continuous across the free surface
- the water pressure lmmediately below the free surface must
be equal to the alr pressure immediately above. We can use

Bernoulll's equation to show
9F » 1 VE-VE + 97 = o. onz= 7 , (2.9)
Zz =z

where ¢ 1is the acceleration of gravity. Since it 1is
consistent with our earlier assumption that the slope of the
wave is small, we can neglect the nonlinear terms. Then the

linearized dynamic boundary condition on the free surface

becomes

) on z=0.  {(2.10)

7= v &
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This boundary condition 1s also satisfied on the mean

waterlline.

The kinematic and dynamic boundary conditions on the

free surface can be comblined into

P28, 9% = o on z=0.  (2.11)
e FZE

This is called the free—surface boundary condition or the

wvave equation.

A solution of Laplace's equation which satisfies the

bottom and free—surface boundary conditions is

B = st cosh KIEH)) o LR —z) (2.12)
£ swmhiA)

where & is the wave frequency, £ is the wave
number, A 1s the wave amplitude, and Z is time. (In
equation (2.12) we have used complex notatlon. Throughout
this report we will use the symbol 42 to indicate that the
real part must be taken.) Fﬁrthermore, the wave frequency

and wave number must satisfy the dispersion relation.

w* = Ayz‘w/frf?/}/ (2.13)

We can use the dispersion relation to find the speed of a

wave crest.

y= /A’ aniik7) | | (2.14)

where ( 1s called the phase velocity. The phase
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velocity is a nonlinear function of frequency and wavelength

because

: /6: .Z%QCA ‘ (2.15)
where A is the wavelength. In general, for the same water
depth, longer waves will travel faster than shorter waves.
This phenomenon is called dispersion, and 1t explains why

equation 2.13 is called the dispersion relatiocn.

The derivation of Alry wave theory requires us to

assume:

1) the wave's amplitude is much smaller than the

wavelength,
2) the fluid is irrotational,
3) the fluid 1s 1ideal, and
4) the fluid is incompressible.

These assumptions limit the type of wave motion we can model
well. Basically, Airy wave theory is not a good model of
steep waves or waves traveling in shallow water. In
general, Alry wave theory 1is a good model of long ocean
waves in a reglon slightly below the free surface and
slightly above the bottom. Le Mehaute has suggested a range

for which Airy wave theory would be sultable (Figure 5),
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The results of Alry wave theory for finlite and inflnite
water depths respectively are summarized in Tables G.1 and
G.2. Alry wave theory is the basls for the theory of

irregqular waves which will be developed in this paper.

2.2 THEORY OF IRREGULAR WAVES

Presently. a finite number of regular waves are
superposed to model irregular seas. Each regular wave has a
distinct frequency and random phase. For example, the free

surface elevation in two dimensicns 1s glven by
A
V.75 el 2} 4
7= ge 2 4yt P (2.16)
7=/

where N 1ls the number of regular wave components, A4, is a
complex wave amplitude with randem phase, 4; is a wvave
number, [t ls the distance propagated, Aq7 is a wvave
frequency, and Z is time. Other wave propertles can also
be represented in this manner. This technique is called sum
of sinusolds. It is based on the principle of

superposition. It is inefflclent because 1t requires many

multiplications and additions. Another, less obvious,
and undesireable characterlstic is the discrete
representation of the seastate. Consequently, the

distribution of wave energy 1s not continuous. Furthermore,
this method does not allow for wave breaking. When a wave

becomes too steep, it will break. Sum of sinusclids <an
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create waves that are so steep they are physically
impossible. This papef will demonstrate an alternative
method to sum of sinusoids whcih lé more efficlent and gives
a continuous distribution of energy. However, lt also does
not allow for wave breaking. Furthermore, since it is based

on Airy wave theory, it 1s subject to the same limitations

as that theory.

2.3 SUMMARY OF CHAPTER TWO

Subject to certain limitations, Alry wave thecry can be
a very useful model of ccean waves. In general, Alry wave
theory 1s not a good model of very steep waves Or Wwaves in
very shallow water. Alry wave theory is a good model of
long waves in deep water. Slnce Alry wave theory is llnear,
many regular waves can be superposed to medel irregular
seas. As the number of regular waves appreoaches Infinity,
the distributlon of wave energy becomes continuous, and the
Fourler series becomes a Fourler transform. In the next
chapter it will be shown how Fourler transforms and
convolution integrals can be used to model waves more

efficiently than sum of sinusolds. .



CHAPTER 3
THE CONTINUQOUS SPECTRUM OF OCEAN WAVES

‘3.1 FOURIER TRANSEORMS AND INVERSE FOURIER TRANSEORMS

To begin this problem, the Fourler transform and Its
inverse willl be deflned. This will not be a rlgorous
analysis, but it will be a good Introductlon to the
applications of the Fourler transform. For example, suppose
we know a function in the time domain. The fourlier

transform of - this function can be used to find Iits

expression in the frequency domain as follows:

4
Flw) = _é Al @ A2 i (3.1)

where 77/ is in the time domain and ~7%)1s in the frequency
domain. f%ﬁ/might represent the free-surface elevation, the
water—particle velocity or acceleration, or the water

pressure. The inverse Fourier transform is defined as

_ B oy, |
A = ‘_2%4 Fru) @ Z (3.2)
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Therefore, equatlon (3.1) can now be expressed as

& o
L L —L
)= L) S AE)e JZe 2o (3.3)
=@
In certaln cases the order of 1integration can be

changed.

(4 ) (a2 ' _
)= [ T4 [ o B (3.4)

Since the second integral 1s a delta function,
&
A = f 0T AT SE-2) =f) (3.5)

Therefore, 1t has been shown that the linverse fourier
transform of the transform of,ﬁ4$}is }4é7. This is very
convenient because the wave properties we know in the
frequency domain, as a result Alry wave theory, can also be
expressed in the time domain. However, there are
limitations to this theory. In general, the Fourier
transform of a function will exist if the absolute value of
the function Iintegrated over the range from = to <2
exlsts. This rather modest beginning leads to a very

important result — the convolution theorem.
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3.2 THE CONVOLUTION THECREM IN THE TIME DCMAIN

Having defined the fourier transform and 1its Inverse,
the convolution theorem can now be derlved. For example,
suppose we know a transfer function in the frequency. domain
which will convert the horlzontal component  of
water-particle veloclty into the vertical component of
water-particle velocity. This relationship can be expressed

as

(3.6) -

are cguplex.

But 4/)/and Zﬁ@/can be expressed in terms of thelr

Fourler transforms. Therefore, equatlon 3.6 becomes

@ @ LT
w/:_é /5/2—)0/2;/ @Zr5=) @ oo (3.7)
where /J/#/ and /%) are real functions in the tilme domain.

This equation can be rearranged.

@D & og
H /) = _é //2:}_4 Vi i i /a/a'c/Z' (3.8)
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Now let &#»2=7". Then equation 3.8 becomes
@ = wZ A :
) )= é 4/2-/,&; wit=%)w X dF? (3.9)

Under certaln condltlions the order ¢f Integration can

be changed. Then equation 3.9 becomes
& & W
Hn)= { _é’ pE) At E e T (3.10)

But thls 1s by definiticn the Fourler transform

of 4%/ . Therefore,
@ :
) = [ AW ERZT = Cﬁ(‘ﬂ&\jmﬁ(s'm

The final integral is called the convolution
of:éé?%ith ff?. The convolution integral enables us to
generate a time series of the vertical component of
water—-particle velocity directly from the time series of the

horizontal component of water—particle veloclty.

3.3 THE FOURIER TRANSFCRM AND CONVOLUTION INTEGRAL

The Fourier transform and the convolutlion integral will
be used in this paper to develop efficient algorithms for
modellng ocean  waves. For instance, the vertical
attenuation and horizontal propagation of ocean waves can be

modeled by Fourier transforms.
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A time series represehts a history of events at a
single point in space. A time serlies can be transformed so
that 1t represents another time serles at the same point 1n
space or at a different point in space. Some operatlions
which do not "move" a time serles of ocean Qaves in space
include differentiation, integratlon, and Hllbert
transforms. (A Hllbert transform is a phase shift of
ninety-degrees in the frequency domain.) The operations
which do "move" a time serles thr&ugh space include vertical

{

attenuation and horlzontal propagation.

A time serles of the free-surface elé%;tio- willl be
convolved with transfer functlions to generaté time serieg of
s

P 5 —
y : /
the dynamic water (pressure, and the/horlzontal and(:géifical

AN

/
components of water-particle velocity and acceleration.

Transfer functions will also be developed to model the
vertical attenuation and horizontal propagation of ocean
waves. The six time serles that are required for a
wave-force analysis will be known everywhere in space and

they will be generated from one time serles.

3.4 THE TIME AND WAVE-FREQUENCY DOMAIN

As the number of discrete waves N goes to Iinfinity
while the difference between neighboring wave frequencies
and wave numbers goes to zero, the summation Iin equation

2.16 approaches its lIntegral representation,
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/e f?e‘@é_/;@’%‘)/ - O~ wzf/Ow w{\h 3 (3.12)
where 4%%)is a complex amplitude which varies cﬁntinuously
with wave frequency and has a random phase. Equation 2.16
is a Fourler transform in the time and wave-frequency
domain. As long as 4%@Vhas certaln properties, we are now
free to use the very powerful tcols of Fourier transform
analysis. Specifically, we will be most interested in the
convolution of equation 3.12 with the inverse fourler
transforms of transfer functions which we will develop in
the frequency domain. Those transfer functicns will be

based on Alry wave theorvy.

\ /_

Equation 3.12 can alternatively be expressed as
w 4 e
LA - 2) (3.13)
= e L [ Ak e e -

4 r e £ e
where,4%%/is a complex amplitude which varies continuously
with wave number and has a random phase. Therefore, we can
also express equation (2.16) as a Fourler transform Iin the

space and wave-number domain.  Both equatlons (3.12) and

(3.13) have certaln advantages and disadvantages.

The disédvantage of equation (3.13) 1s that its inverse
Fourler transform requires an integratlon along the X-axis.

Physically, this is a very difficult thing to do because it
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would require many samples of the oéean wave along a
straight line. However, this method is used to solve the
Cauchy-Polsson problem. The advantage of equation (3.12) 1is
that it represents the free-surface elevation at a single
point 1in spaée. In the real world, wave-rider buoys have
been doing this measurement for a long time. But this
method does require long time records to model the
horizontal propagation of 1irregular waves over ‘ﬁzigi
distanceés However, time-domain analysis of offshore
e

structures will not require us to simulate the propagatlon

of irregular waves over long dlstances.

v
3.6 SUMMARY OF CHAPTER THREE )
: P s W@\

Given a time serles of the Aéree—sufface elevation at
one point in space, time serles of water particle velocities
and accelerations, and pressure can be generated at other
points in space. The glven time series can be either
measured or simulated data. The generated time series can
represent wave kinematlcs at points ln a g;ld. During a
time-domain simulation, the wave kinematics required by
Morison's equation can be interpolated from the grid. The
convolutiocn integrals necessary to perform this analysis are

usually more efficlent than sum of sinusolids.



CHAPTER 4
TRANSFER FUNCTICNS FOR ANALYSIS OF OCEAN WAVES

4.1 EFFICIENT MCDELING OF OCEAN WAVES

For very complicated offshore structures, calculating
the wave kinematics at grid points 1s more efficient than
calculating wave kinematics for every finlte element. This
would be especially true for offshore platforms. (However,
for risers, it is probably more efficient to calculate the
wave Kkinematics for every finite element instead of a mesh
of points.) In particular, the methods of digital-signal

processing are well-sulted for a grid.

The coordinate system we will adopt for the grid is
given in flgure 6. The X-axls is positive to the right,
and the Z-axls is positive upwards. The number of grld
points along the horizontal is é. , and the number along
the vertical is ﬁff . The free-surface elevatlion at the
upper—left corner of the grid is glven. It is required to
know the wave kinematics at every grid point at each time

step.
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To move from one grid point to ancother grid point
parallel to the mean waterline wlll be called horlzontal

propagation. To move downward wlll be called vertlcal

attenuatlon.

There are numerous ways to calculate time serles of the
wave kinematics at all grid points when the the free-surface
elevation at one grid point is the only known time serles,
However, there are very few good methods. For instance,
using one convolution integral to generate the time serles
of the horlzontal-water particle acceleration at the
bottom-right corner from the tlme series of the free-surface
elevation at the origin 1is not Q;ry afficient. It 1s not
very efficient‘because evaluating the convolution Iintegral

would require many multipllcations and additlens.

A far more efflclent method is to do the convolution
integral 1in steps. For instance, use an impulse response
function that models horizontal propagation to move the
free-surfa;e elevation at the left side of the grid to the
right side. This is a very good first step because the
impulse response functlon that models horizontal propagatlon
requires many sample points. It 1is best to do the the -
convolution 1ntegrals that requlre the most effort first.
Even though the ultimate goal 1s to find the horizontal
‘water-particle acceleration at the bottom-right corner,

there are many time series that can be calculated at
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intermedlate steés. This 4is what makes tﬂls particular
method so efficient. Now that the free—surface elevation is
known at the right side of the grid, the horizontal
water—particle velocity at the mean waterlline can be found.
The impulse response function that performs this operatlon
requires fewer sample point; than the Iimpulse response
fuﬁction for horizontal propagation. Then use an impulse
response function that models vertlcal attenuation to move
the horizontal water-particle velocity at the mean waterlline
down to the bottom of the grid. This Iimpulse response
function requires very few sample points. To find the
water—particle acceleration, differentiate the
water-particle velocity with respect to time. This
operation requires only two sample polints. Therefore, 1ln
additlon to calculating the horizontal water-particle at the
bottom corner, three other time series were calculated at
intermediate steps. Those three other time serles were also
required, and they can also be used to generate other time
serles within the same column of grid points. Thls is what
makes this method much more efficlent than using one impulse

response functlon to do horizontal propagation, vertlcal
attenuation, etc. Flgures 7 and 8 give the algorlthms

used for generating tlme series ln this paper.
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4.2 THE TRANSFER FUNCTICNS IN DEEP WATER

The dispersion relation in deep water is
W= Ay | (4.1)

where %) 1is the wave frequency, £ is the wave number,

and J? is the acceleration of gravity.

The  transfer function for modeling  horizontal

~ propagation lis Hcf‘d mﬁtg\ (f\‘\fﬁ(q-\c’“‘q at o

sy = @ SN (a.2)

where J4¥ is the distance propagated to the right. This
transfer functlon 1s used to move the free-surface elevatlon

at the origin horizontally.

The transfer functlion for modeling vertical attenuatiocn

is
pftz Ve mowea ATy

Arw)= & (4.3)

where 4Z is the negative distance below the mean waterline.
This transfer function is used to find water-particle

velocities and pressure below the mean waterline.

The transfer function for differentiaticn 1is

Hly) = LW /ﬁ —X7 /\-\E(OT”"“"“Q’W\ (4.4)
phmvﬁgk**f ‘ WRT' — O

This transfer function is used to flnd the vertical

- -2
W —V A
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water-particle velocity on the mean waterline from the
free—surface elevation. It 1is also used to convert

water—particle velocities into accelerations.

The transfer function for converting the free—surface
elevation into the horizontal water-—particle velocity on the

mean waterllne is

!
Ae) =/dd/ ”Z —> W (4.5)

This transfer function is similiar to a differentiator, but

it does not induce a phase shift.

4.3 THE TRANSFER FUNCTIONS IN WATER OF FINITE DEPTH

The transfer functions in water of finite depth are
similiar to those in water of infinite depth. However, one
mﬁjor difference is the dispersion relation. The dispersion

relation in water of finite depth ls
wr= Ayzess (A%4) (4.6)

where & is the wave frequency, A 1is the wave

number, ¢ is the acceleration of gravity, and 4 1is the

water depth.

The transfer function for modeling  horizontal

propagation is éﬁé;““f“:ﬁf?
e dX Pext MQQ ?I‘CQT(@W*\

/7//66'}/: & ¢ (4.7)
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where 4ﬂ¥ is the distance propagated to the right. It is a

positive number. This transfer function 1ls used move the
free—sfgg?ce elevation at the origin horizontally.

The transfer function for modeling vertical attenuation

of the horizontal water-particle velocity and the dynamic

pressure is ' dercémeﬂmuﬁjrc“ YV
ey

- Ers5

where AZ 1s the negatlve distance below the mean waterline.

The transfer functlion for modeling vertical attenuatlon

of the vertical water-particle velocity l1s

Jortic LYV W

A) = Sl [A/AEL) (4.9)
S5 (KH)
The transfer function for differentiation is
Al = i /?Z ~— \r(m\d’“') (4.10)
W —%V O\

r\}--——'”_:)a.«
This transfer function is used to flnd the vertlical

water-particle velocity on the mean waterline from the
free—surface elevation. It 1s also used to  convert

water-particle velocitles into acceleratlons.

The transfer function for converting the free—surface
elevation into the horlzontal water-particle velocity on the

mean waterline l1s
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)= SOf —7 (o (0 (4.11)
S~y T = ol )

4.4 SUMMARY OF CHAPTER FOUR

An efficient algorithm for calculating wave kinematics
in a grid has been discussed. The transfer functions In
water of infinite and finite depth have been presented. The

fésulting impulse response functions will now be discussed

in detall.



CHAPTER 5
DIFFERENTIATING TIME SERIES OF OQCEAN WAVES

A time series of the free-surface elevatlon can be
dlfferentiated with respect to time to generate a time
series of the vertical water particle velocity. This s
true for both infinite and finite water depths. Physically,
there is no justificatior
However, according @

free-surface elevation with respect to time gives the

performing this operation.

ave theory differentlating the

|
vertical water—-particle velocity. Similiarly, time serles

of the water particle gcdelerations can be generated from

——

time serles of the wa;z;ﬁh“par%icle—~*é%fffifig; by

differentiation with respect to time.

5.1 THEORY OF DIEFERENTIATION OF SINUSOIDAL WAVES

The equation for a sinusoldal wave in complex notation

is

)= o (T W (5.1)
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where &’ 1s the frequency and Z represents time.

Differentlating this functicn with respect to time

gives

)= cwe T 5.2)

where,fﬁg/ls the first derivative of 742/.

In this manner, time serles of the vertical
water-particle veloclity on the mean waterline can be
generated from time serles of the free-surface elevation.
Similiarly, the horizontal and vertical water-particle
accelerations can be g¢generated from the horizohtal and

vertical water-particle velocltles respectlvely.

5.2 NUMERICAL DIFFERENTIATION OF SINUSOIDAL WAVES

The approximate derivatlive of'rﬁ%)as given by the

central difference method 1is

AW~  AlErdr) — S = A7)
24F

(5.3)
where 47 ls the time step and 4 1s an index.

As discussed in appendix A, there are two types of

errors assoclated with ti approximation. The first type

of error is due to| truncation The truncation error I1is
- reduced by taking smaller time steps or by using a hlgher

order differentiator. The second type of error 1s due to
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noise. This type of error ls best eliminated by

Furthermore, this method becomes less accurate as

the number of sample ponts per wave ls reduced.

5.3 SUMMARY OF CHAPTER FIVE

Numerilcal differentiation is a very efflclent method
for generating time series. However, 1t must be used

carefully because it does amplify nolse. =V L3 Tl



CHAPTER 6
THE HORIZONTAL WATER-PARTICLE VELOCITY

A time serles of the free—surface elevation can be
differentated with respect to time to generate a time series
of the vertical water-particle velocity on  the mean
waterline. This 1s true 1in water of either infinlite or
finite depth. A time series of the  Thorizontal

water—particle velocity can be generated in a similiar
manner.
6.1 HORIZONTAL WATER-PARTICLE VELOCITY — DEEP WATER

The dispersion relation in deep water is

w*=Ay (6.1)

where 4 1is the wave frequency, A  1is the wave number,

and JV is the acceleration of gravity.
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The transfer function for converting the free-surface
elevation lnto the horizontal water-particle velocity on the

mean waterline is
Lo TR
*42 —7 KA(‘NW»Q.L.)

(CK W &.-,_A)\ G/V_Lﬂ_)_\,j’_/(ﬂ Jﬁ D\J’k‘]ﬁ i—'\j‘la'\m \

(6.2) -

w)= e

"GQ\ QJ,/\\ 1 o
This transfer function does noi have a Fourler
transform, but it does have a “fourler serles. The

coefficients of the Ilmpulse respoti9/ function have been

derived in appendlx B, equation B.6.

c/!é - ZEro
sindt/=/ o. Aor 77 evern
— (6.3)
2}%&42/2' éwéf

where Aﬁf is the time step.

A plot of this function 1s given in figure 9. It 1is
a symmetric function which rapidly approaches zero as the
time becomes large. In fact, the coefficients of the
impulse response functlon are inversely proporticnal to the

square of time.

when the conveolution integral is evaluated numerically,
the range of integratlon should not extend beyond the time
when the amplitude of the impulse response function becomes
less than a certaln tolerance. The time at which this

function 1s less than a certaln tolerance ls
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r> 247 7 (6.4)
where & 1is a fraction of A7ft)at /=T

The corresponding number of sample points 1is

> 2 L _
7= 7—@— (6.5)

where 7 = /47 .

6.2 HORIZONTAL WATER-PARTICLE VELOCITY - FINITE DEPTH

The disperslon relation 1ln water of finite depth is
2 A7
W= ,»{:yécw/ﬁ/?r/ (6.6)
3
where ¢/ is the wave frequency, A 1s the wave
number, ¢ is the acceleratlon of gravity, and /% 1s the

water depth.

The transfer function for converting the free-surface

elevation into the horlzontal water-particle velocity on the

mean waterline is i%? —7 kk (¢“_u.zf (
,L/w} —= ﬁL— . (6.7)

2aghlsksB)

This functlion does not have a Fourier transform, but it
does have a- Fourier serles. But even the Fourier serles

solution cannot be expressed in terms of elementary
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functicns. However., the fast Fourier transform can be'used
to evaluate the Fourler coefficients. FTlgure 10 compares
the lmpulse response functions for Infinite and finlte water
depths. Even though the water depth 1s very shallow, the
two functions are very similiar. Therefore, the behaviour
of the function for infinite water depth case can be used to

size the function for the finite water depth case.

6.3 SUMMARY COF CHAPTER SIX

The impulse response function for transforming a time
series of the free-surface elevation into a tlme serlies of
the horizontal water—particle velocity on the mean waterline
in deep water has been derived. The impulse response.
function for water of finite depth must be evaluated
numerically. However, the theoretical solution for deep

water can be used to size the numerical solution for water

of finite depth.



CHAPTER 7
THE VERTICAL~-ATTENUATION PROBLEM

A point far below the free surface deoces not feel a
wave's disturbance as much as a point near the free surface.
This phenomenon is called vertical attenuation. According
to Alry wave theory, the vertical attenuation of waves

varies exponentially as a function of the distance from the

free surface.

7.1 VERTICAL ATTENUATION IN DEEP WATER

The dispersion relation in deep water l1s
2
w = Ayg (7.1)

where 4’/ 1is the wave frequency, /3 is the wave number,

and ¢ 1is the acceleratlon of gravity.

The transfer function for vertical attenuatlon In deep

water 1is

M) = &€ A/4=

(7.2)
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where 4Z1s the negative distance below the mean waterline.

The inverse Fourler transform of this transfer functlon

has been derived in appendlix C, equatlon C.15.

4/2"/ _L (7.3)
[F 4

A plot of this function is given in figure 11. It is
a symmetric function which rapidly approaches zerc as the

time becomes large. In fact, the function converges

exponentlally.

when the convolution integral is evaluated numerically,
the range of integration should not extend beyond the time
when the amplitude of the function in equation 7.3 becomes
less than a certain tolerance. The time at which thls

function is less than a certain tolerance is

[T/= 2'4?4?5" (7.4)
/9

where & 1s a fraction of the value of A5 at F=o. .

The corresponding number of sample points is

/0/ \.%Z//Yé’ (7.5)

where 7T =n4Z .
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7.2 VERTICAL ATTENUATION IN WATER CF FINITE DEPTH

The disperslion relation 1ln water of finite depth is

w2= K9 £ans (£7) | (7.6)

where «' 1s the wave frequency, A is the wave

number, g? 1s the acceleration of gravity, and /4 1is the

water depth.

The transfer functions for vertlical attehuation in
water of finite depth are

Agéq/ =_ C&£614¢72§ﬁ42) hes gunt

cest ik4)
Moly) = spts(K(ZrlY h-wia&w A (7.7)
SIDARA) Ao &

where the first transfer function models the vertical

e

attenuation of the ’Gynamic pressuré] and the horlzontal
water—paticle velocity and acceleration. The second
transfer function models the vertical attenuation of the
vertical water-particle velocity and acceleration. These
transfer functions cannot be expressed in terms of
elementary functions. However, the fast Fourler <transform
can be used to evaluate thelr inverse Fourier transforms.
Flgure 12 compares the 1mpulse response functions for
infinite and finite water depths. Even though the water

depth 1s very shallow in these examples, the two functions

are very similiar. Therefore, the behaviour of the function
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for attenuation in deep water case can be used to slze the
impulse response functions for the finite water depth case.

-~ a

7.3 SUMMARY OF CHAPTER SEVEN

The inverse Fourler transform for vertlcal attenuation
in deep water has been derlved. The impulse response
functions for water of finite depth must be evaluated
numerically. However, the theoretical solutlon for deep

water can be used to slze the numerlcal solutions for water

of finite depth.



CHAPTER 8
THE HORIZONTAL-PROPAGATION PROBLEM

A single wave moves horlzontally at a rate equal to lts
phase veloclty. A wave's phase velocity 1s a function of
the wave's frequency and the water depth. Thls phenomenon
is called dispersion. The front of a wave group moves at a
rate equal to 1lts group velocity. For waves travelling over
short diétances, the phase veloclty 1s a good measure of a
wave's speed. (The model proposed in this paper does not
simulate group effects.) GClven a time history of the
free—surface elevation at a point in space, the free—surface
elevation at nelghboring points can be found by convolving
the original time series with the impulse response function

of the approplate transfer function.

8.1 HORIZONTAL PROPAGATION IN DEEP WATER

The disperslon relation in deep water 1is

wWEt=Ag _ (8.1)
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where <2 1s the wave frequency, ~  1s the wave number,

and Jﬁ is the acceleratlon of gravity.

The transfer function for horizontal propagation in
(ph(b}[ S@.A-L(g—-*‘ > )
deep water is JO TBﬂ(jk39‘E; / ;/

(A dA '
) = & (8.2)

where 4} is the positive distance propagated.

The inverse Fourler transform of this transfer function

has been derived in appendix D, equation D.10.

= [T i - < 2 )eos 455
(4= S )]

' where (/4) and S/4) are the cosine and sine Fresnel

integrals.
Fo
Figure - .13 shows that for this functlion the period of

oscillation  becomes smaller while the amplitude of
oscillation remains constant as the time goes to positive
infinity. As time goes to negative infinity, the function
approaches zero very rapldly. The method of asymptotlcs

will now be used to explain these phenomena.
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The cosine and sine Eresnel_integrals apprecach 0.5 as

thelr arguments go to infinity. Therefore,

Cﬁﬂ/ 6//4?5/_‘{'—-}7‘629 (8.4)

The amplitude of oscillatlon 1s constant and the period

)= [

of oscillation becomes smaller because of the the argument
of the cosine function is an nonlinear function of time.

This is in agreement with flgure 13.

In fact, 1if one 1is given the apparent perlod of

osclllation, the time at which it occurs ils given by

It ) — 27 27 (8.5)
4L Ay

where 2? is the apparent perled.

Now solve for the time in terms of the apparent period.

7. = é//ﬁ"d* _ 74 (8.6)
7% =
In particular, 1f the apparent period 1is choseﬁ

as 24/# which 1s the perlod of ocillation of a wave sampled

at the nyquist rate, equation 8.5 becomes

7 o= ZFAX - 4% (8.7)
S - a |

Therefore, the time at which the apparent perled
equals ZATis directly proportional to the distance

propagated and inversely proportlonal to the time step. As
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the distance of propagation lncreases, the émount of effort
reéuired to evaluate the convolution Iintegral increases
linearly. For very large distances, the effort required to
evaluate the convolution Iintegral could become enormous.
But this particular model is not meant for slmulating the
propagation of waves over large distances. For very large

distances wave group effects would become lmportant.

when the convolutlon integral for horlzontal
propagation is evaluated numerically, the range of
integration for positive time should not extend beyond the
time when the apparent period equals two times the time
step. Therefore, the number of sample polnts of the impulse

response function for positive time is

where 77-;_ =/ 47

Since the first term is much greater than _one,

ﬂ" N 2/7‘11{/ (8.9)
HE

For negative arguments, the cosine and sine Fresnel

integrals behave like

clz) = L = HE) LR # g5 conf 2
SZ) = =< * FE) ca;/_/z.z / ~J/E oy

(8.10)

— 2
s
i,

Gl
2
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where the functions /“/Z and gﬁéﬂ}are defined In chapter

seven of Abramowitz and Stegun.

As time gees to negative infinity the cosine and sine
Fresnel integrals approcach -0.5. The 1leading order

behaviour of equation 8.3 1is

41— '*/;fjj as P_J.%Xz'-—-a, - (8.11)

Therefore, the amplitude of the function is directly

proportional to the distance propagated and inversely

proportional to the time cubed.

when the convolution integral ls evaluated numerically,
the range of integration for negative time should net extend

beyond the time when the amplitude of the 1impulse response
function becomes less than a certaln tolerance. The time at

which this functlon 1s less than a certaln tolerance is
J/ .
V7 4
-/.?z) /44’/ z (8.12)
&% g
where & is a fraction of the value of A@éﬁ/at ==,
The corresponding number of sample points is

2 /‘?2 ) dk//z (8.13)

where 7 =-/7 47 .
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Equations 8.9 and 8.12 are very useful for evaluating
rhe convolution integral when the lnverse Fourler transform
is given by equation 8.3. However, equatlon 8.3 1s only
applicable when the cut-off frequency is infifite. But the
impulse response function for finite depth will be evaluated
numerically. Its cut—off frequency will be finite. For
deep water, the inverse Fourler transform of equation 8.2

for a finlte cut-off frequency 1s (equation D.11)

éé‘/réy_%:/c//%@@-ég} z)# 6@}%’ fj}@ﬁ%
*/f@#ﬂ;-%f/+f%f}f/ﬂ%y/

where 4/ 1s the cut—off frequency.

(8.14)

Flgure 14 shows that the behaviocur of this functlon
is quite different from the functiocn plotted in figure 13.
As the time goes to positive infinity the function
approaches zero. If the time at which the function goes to
zero 1s less than the time at which the apparent period
equals ;ﬂdﬁf , the convolution integral will give lncorrect
results. The function goes to zero when the argument of the

cosine and sine Fresnel integrals changes sign.
7= 24 2k (8.15)

where .Z;represents the time at which the function

approaches zero.
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When the Fast Fourier trnasform 1s used to evaluate the

impulse response functicn,

ay = 2/%_"_ ‘ | | ' (8.16)

Therefore;

7= 2zd1 (8.17)
_QZZZ .

Consequently, ,%: and %:. are equal, and the error

caused by  the finite cut-off frequency affects the

convolution integral very little.

8.2 HCORIZCONTAL PROPAGATICN IN WATER OF FINITE DEPTH

The dispersion relation in water of finite depth is

40'2 = Ay Lens A% (8.18)

where & 1s the wave frequency, 4 is the wave
number, 57 is the acceleration of gravity, and zﬁ is the

water depth.

The transfer function for horlzontal propagation in

water of finite depth 1s

_ (ALY
) = € (8.19)

where gﬂ*’is the positlve dlstance propagated.
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Thls inverse Fourler transform does not have a solutlon
in closed form. However, the fast Fourler transform can be
used to evaluate lt. Figure FE!%S compares the lmpulse
response functions for infinite and finite water depths.
Even though the water depth 1s very shallow, the two
functions are very similiar. At shallower water depths,
Alry wave theory would not be valid. Therefore, the
asymptotic analysls performed for the deep water case can be

used to slze the lmpulse response function for the finite

water depth case.

8.3 SUMMARY OF CHAPTER EIGHT

An aysmptotlc analysls has been made of the Ilnverse
Fourier transforms of the transfer functions for performing
horizontal propagation. The functicn for deep water has a
closed form solutlon. The 1impulse response function for
water of finite depth must be evaluated numerically.
However, the theoretical solution for deep water can be used

to size the numerical solutlon for water of finlte depth.



CHAPTER 9

GUIDELINES

The guidelines for efficient and accurate convolution computations are

discussed here. These guidelines are used to choose parameters that are

necegsary inputs for setting up the computation.

9.1 GConstraints

Four types of constraints were developed in the formulation of the

technique:
i.

ii.

113,

1lv.

Differentistion: Minimum of 8 samples per period
Horizontal particle velocity: Size of impulse response

function,

Vertical Attenuation: Size of impulse response

funetion,

a =_2__;Dzln6
a Dt g

Horizontal propagation, size of impulse response function:

For positive real time,
_ 2m Dx

s(dt)2
For negative real time,
1/6 1/2
o= &
8 m 8

Py

1
Dt

where Dt time increment

Dz

vertlical distance of propagation

horizontal distance of propagatlon

5
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1t

g acceleration due to gravity

tolerance

]

In the analysis 6, the level of tolerance is set at 0.001; & is the
fraction of the value of the impulse response function at t=0.

The first two constraints do not need any further comment, The
vertical attenuation problem does not give rise to difficulty in the
numerical computation because the transfer function is essentially an
exponential decay. The horizontal propagation problem can be difficult to

compute and usually dictates the size of computations.

9.2 Phase Frror During Propagation

As the waves are propagated by the convolution process, errors in
phase increase with the distance travelled. For a given propagation
distance Dx, the shortest wave length waves in the time serles travel the
greatest number of wave lengths and therefore have the largest likelihood
of tuilding up a phase error. In the programs the user must choose the
largest phase error which cen be tolerated for the shortest wave length

waves., We usually use n/4 radians. Lets

Fc = cut off frequency
F. = sempling frequency
N = number of sample points

The magnitude and the phase of the transfer function for horizontal

propagation are shown here.

Let R

It

FS/Z Fc » R must be greater than 1, we
recommend 4

Let o Dx/Lc

where L. is the length of the wave with frequency F,. The maximum



phase error is

5Q

max

Here AK

when AQmax

then N

AK . Dx

2

2

K Af

C
g

Dx

R

N C

g

47Ro

error in the wave number k

group velocity

number of sample points

L
Dx ol
F (Eﬂ(ﬁﬂ s
c
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m/4, (The maximum phase error is set by the user.)

16 ¢ R
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9,3 Choice of Parameters

Typically, the analyst is faced with any one of the following
problenss
i. Given e distence (Dx) and the cut off frequency of the wave,
Fe, the objective is to select Dt and N. It is recommended that
Bt = Tc/8
go that R = 4
where 1/Tc is the cut off frequency, Fc
Then N = 64 o ~
The maximum phase error asscciated with this choice is T/4
radlans.
ii, Given the cut off frequency and the size of impulse response
function. The objective is to find out the number of wave lengths over

which the time series can be propagated. Once again

pt = Tc/8
Dx _ N
L 64

The maximum phase error associated with this choice is %‘ radians.
i1i. Given the distance and the number of points in the
convolution, the objective is to establish the theoretical cut-off

(shortest) wave simulated.

9.4 Interpolation

The convolution method is set up to compute the kinematics at a number

of grid points. Between the grid points a quadratlic interpolation scheme
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L
is employed. The grid spacing ought to be §£ or less, where Lc is the

shortest wave length.

When the grid spacing is less than Lc/S’ then the quadratic
interpolator will accurately calculate the kinematics at any location
between the grid points. When the grid spacing is greater than an eighth
of a wave length, a guadratic polynomial does not provide a good

approximation to a sinusoidal curve.

1. If the grid spacing s is not as per the recommendation, the

intermediste points will show an error in phase.

2. The smaller grid spacing requires a large number of grid points and

thus a larger memory is needed for the computations.

9.5 Summery of Chapter 9

T f
_c =
8 2fec —

1. The time step Dt <

2. The grid size should be as small as possible to reduce

memory/computation requirements.

L
3. The grid spacing should be less than.‘gE for accurate

interpolations.
4. For phase error 4Q . < /4

Convolution size N = 16 a R
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5. 7Phase error
If a lower phase error is sought, a suitably

kigh N has to be used.



CHAPTER 10
NUMERICAL STUDY

10.1 Introduection

This section presents the results of a study carried out to establish
the accuracy and stability of the numerical solution. The simulation of
ocean waves by convolution has several potential sources of numerical
error. The computed impulse response functions for a finite cut off
frequency are accurate only for a limited range. It has been shown that
the distance (Dx), time step (Dt), and size of the convolution must be
chosen so as to have an scceptable level of accuracy in the computed
results, Furthermore, error gets compounded due to the fact £hat for a
time stepplng operatlon, computed values &t a given instant are used as
inputs for the next time step. This can lead to an unstable solution.

To check stability and accouracy in this section, the results of the
convolution method are compared to the results of an alternative
formulation, the sum of sinusoids, which does not utilize convolution.

In all of the simulations, the sizes of the convolutions have been
chosen so as to satisfy the requirements laid down in the formulation of
the impulse response functions. The acceptable level of error used here is
LC/S (or v/4 in phase).

The numerical study 1s presented as three examples. The first is a
single sinuscidal wave. The second and third sre examples of random wave

simulation,
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10,2 Example 1: Repular Wave

A model scale wave of 0.5 second period and a wave amplitude of 0.1
feet is propagated 5, 10, and 15 wave lengths, which corresponds to 6.4,
12,8, and 19.5 feet. The wave length i1s 1.28 feet. The results are shown
in Figures 16, 17, and 18. The convolution and exact solution are plotted

together. The two time history plots are indistinguishable.

10.3 ®xample 2: Horizontal Propagation of Random Waves

A gpum of N=32 sine waves is used to simulate a médel scale random sea
state. The lowest and highest frequency components are 0.5 Hz and 1.75 Hz,
corresponding to wave lengths of 20 feet and 1.67 feet respectively. These
waves are propagated exactly by sum of sines techniques and numerically by
convolution distances of 2.5, 5.0, and 7.5 feet. This corresponds te 1.5,
3.0, and 4.5 wave lengths of the shortest wave.

The results are shown in Figures 19, 20, and 21. The results are well

within the desired accuracy.

10.4 Example 3: Horizontal and Vertical Propagation of Random Waves

A sea state with a significant wave height of 20 feel and a mean
period of ten seconds was approximated by a sum of sinuscids. These waves
vere propageted exactly and by convolution to a point 300 feet horizontally
and 25 feet down the water column. At this point kinematics were computed.
The water depth is 250 feet.

Figure 22 shows the water particle vertlcal displacement or amplitude
at thet point assuming linear theory. Figures 23 and 24 show the

horizontal and vertical velocity comporents for both the exact and
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numerical convolution results. Figures 25 and 26 present the accelerations
in the horizontal and vertical directions. 1In each case the agreement is
very good. It is concluded the kinematics convolution technigues are
accurate when the guidelines are followed.

Figures 27 and 28 show the consequences of two common pitfalls. One
is the effect of grid spacing on interpolation results and the other is
undersampling.

For the generation of kinematics between grid points, a quadratic
interpolatlon scheme was employed. This scheme can accommodate & curve
with at most two points of inflection between grid points. It is
recommended that the grid spacing be less than 1/8 of the shortest wave
length to circumvent this kind of erfor. Figure 27 shows the simulated
waves for a grid spacing of L /8, L,/4, and L./2 compared to an exact
sinuscidal wave. The phase error caused by the interpolation can clearly
be seen here. The error increases for larger grid spacing. In the exampie
the wave length is 1.28 feet and the propagated distance is 0.48 feet or
3/8 of a wave length. The grid specing of the Lc/B gives excellent results
because no interpolation is required, but the coarser grid spacings result
in substantial errors.

In Figure 28, the error is caused by undersampling. A regular wave of
pericd 0.5 seconds is sampled at 0.15 seconds (clearly violating the
suggested criterion}, Dt = T, /8. Figure 28 shows the results of the’
convolution method along with the theoretical sine wave sampled at the same
interval., Since the nature of the wave form is not correctly.defined due

to undersampling, the convolution gives incorrect results.
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10.5 Suvmmary of Chapter 10

Using numerically simulated waves the convolution method has been
shown to be both stable and accurate when carried out in accordance with
the guidelines presented. In the next chapter the propagation of waves
using conveolution technigues is compared to the propagation of

experimentally measured waves 1in a towing tank.



CHAPTER 11

EXPERIMENTAL STUDY

The objective of the experimental study was to ascertain the accuracy
of the estlmations of horizontal propegation and vertical attemuation for
real waves, which include measurement nolse and wave non-linearities.

Wave data wes collected at the M.I.T. towing tenk. A typical test set
up is shown in Figure 29. Measirements were made at probes 1 and 2
similtaneously, alcng with the pressure variation directly under probe 2.
These histories were taped on an anclog tape recorder (Tandberg 100} and
subsequently digitized. The time history of wave elevation at probe 1 is
‘the input to the convolution computation, which then predicts propagated
time history at probe 2. These predictions are then compared with the
measured history at probe 2. The pressure geuge output is scaled to yield
attenuated wave amplitude at that depth. Thus the results of vertical

attenuation can be checked.

11.1 &Sinusocidal waves

Initially a sine wave of 0.7 Hz frequency was generated. The wave
height wes 0.1 feet. The computed and measured values of the propagated
wave at probe 2 {1.625, 0.0} feet and at the pressure transducer (1.625,
-0.6146) feet are plotted in Figures 30 and 31. The agreement of the
horizontelly propagated results (Figure 30} is very good. There is some
error ip the vertically attenuated results. This is attributed to the
error in the positioning of the pressure gauge aend the tendency of the

pressure transducer to drift and not due to the convolution.
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11.2 Randonm waves

Pseudo-rendom waves were generated in the tank based on a Pierson
Moskowitz Spectrum. The peek frequency was 1.0 Hz end the significant wave
height was 1.25 inches. The water depth was approximately 4 feet. TFigures
32 and 33 show typical spectra of the wave data taken at probe 1 and 2
respectively. (These were computed by a maximum entropy spectral estimator
using 1024 data points). The spectra show that the highest wave frequency
of interest 1s 3.0 Hz. Thers 1s some difference between-the two spectra
(especially at high frequency)}, hence a slight discrepancy in the
convolution results may be expected at high frequencies (above 2.00 Hz).

Figures 34 and 35 present the propagated and peasured random waves at
a distance of (1.625, 0.0) feet and (1.625, -0.6146) feet. This
corresponds to 3 wave lengths of the shortest wave essumed to be present.
The results are in good agreement, except for pressure transducer errors
and except for high frequency fluctuations, which can be explained by the
discrepancy in the spectral contents as discussed above. High frequency
capillary waves are generated by interaction with the tank walls and
non-linear wave effects.

On the whole, the errors are well within the acceptable limlts, and 1t

i8 concluded that real random waves can be propagated using this technique.

11.3 Summary of Chapter 11

The convolution method gives accurate results for real wave

propagation problems.



CHAPTER 12

COMPUTATIONAL EFFICIENCY

Most users consider the time domain analysis as computationally
inefficient and CPU—time‘consuming. An attempt has been made to gauge the
time/memory required for the time series analysis of waves by the
convolution procedure. In all the cases presented here, comparison has
been made with the other time demain alternative, the sum of sinusolds.

In these results both approaches have been used to compute the
kinematics at a number of grid points. These grid points are identical for
both the methods, and the computation for intermediate points is carried
out using an interpolation scheme identical in both the methods. Hence the
results presented here asre for equivalent operations.

The exact requirements are system dependent. The results presented
here are valid for date processed on a VAX 11/750 machine and were gathered

with a system routine called "getcpu®.

12.1 Results

Figure 38 shows the CPU time required for the computation of wave
kinematics (1 displacement, 2 velocities, and 2 accelerations) against the
number of frequency components used to model the spectrum. The grid size
ig 6x6 and the duration of the time series was 100 time steps. It 1s seen
that the sum of sinusoids approach needs a linearly increasing time whille
the convolution method is independent of the pumber of frequency
components., The two methods breask even at n=16 (which is used as a

reference for further studies). The convolution method is 7 times faster
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than a 150 component sum of gines,.

Figure 39 shows the CPU time needed for processing & iime series Qf
increasingly longer duration, For this example, the number of compenents
was 16 and the grid size was 6x6. It 1ls seen that for short duration the
convolution approach takes more time than the sum of sines approach, but if
longer histories (involving more than a hundred time steps) are to be
processed, the convolution method is more efficient.

Figure 38 shows the CPU time (in seconds) needed for different grid
slzes. For-this example, the number of frequency components was 16, the
break even point. The number of time steps wes 100. Generally for a low
number of grid points the sinusoidal method is more efficiemt. But for
larger grid sizes the convolution method is more efficient. However, it is
also clear that the larger grid size requires lerger memory on the system
(regardless of the method). Typically on a VAX 11/750, a {3x3) grid needed
1250 blocks, & (6x6) grid needed 4813 blocks, and a (10x10} grid needed

13,063 blocks.,

12,2 Summery of Chapter 12

The convolution approach offers substantial advantage when simulating
e large number of sinusoidal componente or very long record lemgths. The

grid size alone does not strongly favor elther method.



CHAPTER 13

STRETCHED LINEAR CORRECTION

13,1 Introduction

The computation of wave kinematics up to the instantaneous free
surface is carried out using the stretched linear correction. The
formulation of wave kinematics computations subject to this correction is

presented here along with & slmple example to demonstrate the results.

13.2 Background

PN Pl N /
MWL ’{L \\ T \ \\ - \ v M L

/
= = - \ / =
\\ _’// \\\__ \‘//\ \‘- Ia-— q\- //

Linear Theory Stretched Linear Theory

In the linear water wave theory, the wave kinematics are computed up
to the mean water level (MWL) at any time instant. The typical varlation
of the water particle displacement is shown in the figure. (The dotted

line shows the instantaneous water particle displacement, and "a" is the

wave amplitude.) The adjacent figure shows the stretched lineer
correction, where the variation of the displacement starts with the

instantaneous free surface location. Similar corrections are made to the
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dynamic pressure, veloelity and agceleration computations.

This approximation is important in the computation of shear forces and
bending moments on vertical piles. The results with stretched linear
correction will show a higher force and moment at the wave crest and lower
values under the trough, when compared to the ordinary computation without

the correction.

i3.3 Formulation

For the stretched linear correction, the wave kinematics at any time
instant have to be assigned to the free surface at that instant. The
kinematics below the free surface have to be corrected accordingly.

The transfer function for vertical attenuation is a function of the
distance between the grid point and the free surface so that equation (7.2)

will be interpreted as

H(w) = %%y

where H{w) = transfer function
K = wave number
ZM = distance of a grid point from the free surface

At any grid point, this distance (Zy) will change with every time
increment. The impulse response function corresponding to this tramsfer
function ought to be recalculated at every time step. This would null the
advantage galned by the convolution method over the sum of sinusoids.

A solutlon toc this problem lies in computing the impulse response
functions just once, and then letting the grid polnts move with
the free surface in accordance with the stretched linear correction.

The convolutions now provide wave kinematles at fixed distances
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beneath the instantaneocus Iree surface on a moving grid of peints. To
obtain the correct kinematics at a fixed point requires interpolation at
each time step between adjacent moving grid points. For example, a fixed
point a depth Z, beneath the MWL has an instantaneous depth Zy = 2, + n{t)
with respect to the moving grid. The kinematics at Zm are readily
availeble by interpclation.

This formulation lends itself to an easy implementation because the
original structure of the wave kinematics computation creates the impulse

response function just once and is amenable to interpolations over the grid

struecture.
13.4 FExample

The stretched linear correction is demonstrated for a sinusoidal wave.
The particulars for the problem are:
1. wave amplitude 10 feet
2. wave period 14.59 seconds
3. point of propagation (250, -25) feet
4. water depth 250 feet

5. Dt is chosen as 0.5 seconds.

In this cese T, = 14.59 seconds. According to the guidelines,
T .
D _<
T 5-8

Therefore, Dt complies with the requirements.

Figure 39 shows the water particle displacement history at the point
of interest. The history predicted by sinusoidal theory (but without
stretched linear correction) is plotted on the same curve. This figure

11lustrates the effect of the correction. The corrected wave kinematice
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have a higher value at the wave crest (and a lower value at the wave
trough) than the values computed by the computetions without the

correction.

13.5 Summary of Chapter 13

The implepentation of stretched linesr correction during computation
of wave kinematics using the convolution techniques can be done efficiently
by interpolating within a grid, instead of computing the impulse response
furctions at each instant. An example shows the results for the case of a

aimple sinusoidal wave,



CHAPTER 14

CONCLUSIONS

An elternative to sum of sipusoids has been presented. Instead of &
discrete sum of sinusoids, the Fourier transform and convolution integrals
are used to represent a continuous distribution of sinuscids. The method
proposed in this report is much faster than the sum of sinusoids. A number

of examples for demonstrating the use of this method have been included.

14.1 Limitations of the Proposed Method

The proposed model of ocean waves is linear. It will not model wave
breaking and other non-linear phenomena. Wave grouping is also not
modelled. The proposed method could be used to simulate wave gpreadirg,
but it would require assembling many two-dimensional problems. The
proposed method is not good for propagating waves over large distances.
This method of simulating ocean waves will be efficient only when the wave
kinematics need be evaluated at many points. Sum of sinusoids would
probably be more efficient when the wave kinematics are to be evaluated at

fewer polnts.

14.2 Advantages of the Proposed Method

Unlike sum of sinusolds, the proposed model of ocean waves gives a
continuous distribution of wave energy. In fact, data taken from a
wave-rider buoy can be used directly. Altarnativeiy, data generated by an
ARMA model can be used. For very complex offshore structures that would
require the wave kinematice at many points in a grid, the proposed method

is much more sfficient than sum of sinusoids.



APPENDIX A

DIFFERENTIATION

Differentiation with respect to time 1Iis used to
generate time serles of the vertical water-particle velocity
and acceleration, and the horlzontal water—particle
acceleration. The differentiation 1s done by using the
central difference method. Whenever differentlation 1s
performed numerically, the accuracy and noise amplification
should be carefully investlgated. The central difference
method lis

L)~ _FrErdd)— frt-42) (A.1)
ZF

where #/4) is the derlvative of the function £/ at

time % . 4% 1is the tlme step.

1f A#+dt)and Af-42/are expanded in a Taylor series, the

truncation error can be found. Then

S = flrdl) = fre-dZE)  ~ 4224 “le ) (A.2)
¢ -3 |

uhere;‘ﬁ%?yis the third derivative of 72/ evaluated



DIFFERENTIATION Page A-2
anywhere in the interval from z-4Z to zZ~Z4z .

Therefore, the truncation error is inversely
proportional to the square of the time step. Furthermore,
functions which do not have smooth second derivatives will
have first derivatives that are not well predlcted by the

central difference method.

In particular, let us Investlgate the accuracy of the
central difference methed when it is applied to sinusoidal

functlons. Suppose the sinusoidal function 1s glven by

Ale)= & wr | (A.3)

where <) 1s the frequency. Then the derivative of this

function 1s simply
. ok
£ = iwe “" | (A.4)
where the above equation lis exact.

The approximate derivative as glven by the central

difference method ls

iwtrdt)_ (42

AW ~ & (A.5)
24%
This can be expresséd as
. o
£~ isimiwar) e’ (A.6)

4%
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Now calculate the ratic of the approximate derivative

to the exact derlvative

e
) = s (wdt) , (A.7)
w a4 “_\Jﬁ;’-ﬂov

where A/« is the relative error. When 4% equals one, the
approximate solution is exact. As <o approaches zero, the

central difference method becomes a very poor approximatlion.

P‘I(_‘f\- :'1:'_‘1\
The relative error is plotted in Figure 40. There 1s~
Qmﬁw
no error as the frequency goes to zero. But as the

frequency approaches twe samples per wave period, the
relative error goes topjiefo. This is called the nyquist
rate. In theory, the highest wave frequency that can be
modeled by the methods of digital-signal processing 1s the
nyquist frequency. In practice, the sampling rate should

/1]

never become lower than elght samples per wave perled. ', '

The derivative of a function contaminated with noilse
can have very large errors. In fact, the error can go up as
the time step decreases. For Instance, suppose F(ErdE)

and ;@?ﬁdﬁ)ére contaminated with nolise. Then

#/Ardr) = ;F/:‘M.fj > /D (2A4E)
~ | (A.8)
Lpp-dd) = Flb-d2) v 7E-42)
where /)/¢47)and /ifi-dZ)represent noise. The formula for the

first derivative then becomes
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Sy = < (ial2)=FE-d2) | /i L2 = /-4 2] (A.9)
247 24z
—LEE 2B
&

Therefore, noise leads to-an error in the derlvative
that 1is inversely proportional to the time step. (Figures
41, 42, 43 show a time series contaminated with
noise and the derivatlve that time serles for two different
time steps.) For the second derivative, the additional error
term would be Iinversely proportional to the square of the
time step. This is a very undesireable phenomenon.
However, there are two relatively easy ways of avolding this
problem. The first way is to filter the noise out of the
original time series and then differentiate. The second way
15 to create a differentiator that removes the noilse as it
differentiates. Of the two methods, the first method is
more desireable for our purposes because 1t only requires.

that the preventive measures be taken only once.



APPENDIX B
THE HORIZONTAL WATER-PARTICLE VELOCITY

The free—surface elevation convolved with an lmpulse

response function gives the horizontal water-particle

velocity on the mean waterllne. The convolution \ integral
o~
has the following form: k(?)r + @))
P
W)= [ #e) P~z (B.1)

where d?f) represents the time series of the horizontal
water—-particle veloclty, ?h}/ represents the time serles of
the free-surface elevation, and /%/) 1s the inverse

Fourler transform of the transfer function. In fact, the

inverse Fourler transform 1s not defined. However, the

Fourler serles solutlion does exist,

This lntegral can be evaluated numerically as

s

o _
L/IE) :.—/72 L) Vi —rd 2/ 47 (B.2)
=

where 47 1s the time step, and /7 and // are indices.

H{/#/ and 2Zé§/ are both slnusoidal functions of time. In
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fact, in deep water ZZ/ and 7%/ can be expressed as
e

, wz

Ut = fw e

"= e " ®-3)

where 4/ represents the frequency of the sinusold.

Now equation B.2 can be expressed as

Y .
/w/Q wmdZww Zf 2t DIV Y P (B.4)
7=

But the above equation is a complex fourier series.

Therefore, ”f::::;::::fffgf—ﬂ

vie N4z

bipat) = L J fu/e’ iz (B.5)
i

The evaluation of this integral gives ,
_2:. ZEErD \//
2442

Alodd] = a,\ o 7 Ly (B.6)
=< o0t

—_

inversely proportional to the\ square ofhéime This 1s a
more rapld convergence rate than scme other alternatives
that could have been used to generate time serles of the -
horizontal water-particle velocity on the mean waterline.

For instance, a Hilbert transform could have been used to

transform the vertical water—-particle velocity Into the
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horizontal. But the Hilbert transform is only inversely

proportional to/p_i._nﬁ.



APPENDIX C

VERTICAL ATTENUATION

For very deep water, the transfer function in the

frequency domaln ls

#w) = exp (A4 Z) (C.1)

where éd is the wave frequency, @s the wave number,
and 4# 1s the change in water depth (measured positive
upwards) . Since the transfer functicn 11s a real ahd
symmetric function of frequency, the impulse response
function wlll be a real and symmetric function of time. The

inverse Fourler transform of the transfer function ls gives

by _
@ WE
- W24 F
ﬁé‘/‘ 27.4 &Y/O/_?_/g aw (C.2)
where Z represents time. The dispersion relation for

infinite water depth has been substituted for A .
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As expected, the imaginary part of the Integrand is an
;7 / odd function of frequency, and 1t wlll not make a
contribution to the inverse Fourler transform. The Fourler

e
Aft) = 7//, __/a: éf;o/_a__f%fg ) costw?) obe - (C.3)

transform can now be expressed as

Now integrate by parts.
40E)= 4 e,;g/mwz ) 02 ) /

(C.4)
-2 AF & aﬁd’f-—" Z)aw
# 25 . /w 1o (LAZ ) st )
Since the first term ls zero,
ﬁ/z"/: -2 4Z /Wﬂ,{;’ﬂ/w dE)S//?/ML‘/GQ (C.5)

79t ¢

The derivative with respect to time of equation C.3

glves

@
A1) = -/7/."/ wmp/.-%ﬁ’ﬁ/ s‘/ﬁ/&’v’f/o/w (C.6)

Therefore, the Iimpulse response functlon and its

derivative are related to each other as follows:

w) = I prt (c.7)
41 242/7 -/
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Integrate this expression with respect to time.

4] = C ég}:fﬂgzbl}
20z

where (¢ 1s a constant of Integration.

Page c-3

(C.8)

To find the constant of Integration, evaluate 4/2/

at Z#=¢ . Therefore, |

: /ca / de/o/
C = hbo)= L [ el “/
o 44 /0 J?

A change of variables glves
o

= Ffi d eI

The square of this integral 1is

(2.7
c2= =9 g’ cbe,r/o/-zﬂ//ﬂ / e,a;a/—wljafﬂ/
DUE

This quantity can be expressed as

W
O N N s
7z ?

Now introduce polar coordinates.
@& 7%

c:= -7 /S /“E,;o/-fydﬁc//'
/?.‘2!;0 4

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)
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Therefore, the constant of integration 1s

r= 4/ =9 (C.14)
Z /) rdZ

Furthermore, the final expression for the Iimpulse

response function is , . ;/////-

p)= L ,;—;é e,;a/;zdz; ) (C.15)




APPENDIX D

HORIZONTAL PROPAGATION

For very deep water, the transfer function in the

frequency domaln 1ls
i) = axp [1X4X) (D.1)

where & is the wave frequency, A is the wave number,
and AV is a positive distance over which a wave is golng to
be propagated. Since the real part of the transfer function
is even and the imaginary part is odd, the lmpulse response
function will be a real funétion of time. The inverse

Fourier transform of the transfer function is give by

@ -
st = 2 é /:-a_c/wzxgﬂ/d)dfiy— (I ;f”""/‘”—?'//é A/(D.2)

where Z represents time. The dispersion relation for

infinite water depth has been substituted for A~ .

The ig;egrand can be expanded as
A= 2/7_ / /,-}y /w;gm@jzf,xy cos it # zka:/;azfm-f’d,&f/y P
- 4 j

—Aw/w 259wy ) cos wt +f///f-¢f/"sgﬂfi'ch;} SN g (D.3)
' 9 SN
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As expected. the imaginary part of the integrand is an
odd function of frequency, and it will not make a

contribution to the inverse Fourier transform. The Fourier

transform can now be expressed as
@£ :
=/ [ cos/wdt _ w# D.4)
#t)=L L /_7__ w ) gt (

This integral is simillar to the Iindefinite Iintegral

given below.

Zoy= S coslar s 264 #c )X (D.5)

This integral can be arranged as

Tx)= /w;//ag"é/a - /d;—és)/’d/\’ (D.6)

The expanslon of the integral is

Zh)= //wf@_ﬁzywsﬂ;—ﬁcy

e snfax+8)% ) s b3 czcy/a/,r
rLT / (—F—
This integral can be expressed as

Zh)= /2%\ ////;?Z ms/%/éj_—__ (218 Wmf/@dﬁ‘y
o [ cnf [ ans) ) i

(B.7)

(D.8)



HORIZONTAL PROPAGCATION Page D-3

Now express this Iintegral 1in terms of FEresnel

integrals.

.Z%¢=yé§f;/%/é§;/&i?é&/Caﬂééigggéé/
PRY (/Q%:_/a,t’fd/ :/ﬂé/__%_@_c_ y/ (D.9)

where C/4) and S/7/ are defined
L4 ;
as ;‘»/ cos /@ Z“ydz‘ and p f yf //Z/ZZ z 2/6{2'.‘ respectively.

Therefore, the integral for /4/%/ can be expressed as

A = e //2’— » C/ 'é% Z }caf/_%? /

b

+/Z_L*f%f//f/ﬂ ;5,?2

(D.10)

For finite cut-off frequencies, ./2/ can be expressed

as
ﬁW:%/‘g@ -é% Z/# C(/?%—f’ 1‘/6&5/2/%_‘7
2 (D.11)

el

where £, 1is the cut-off frequency. This expression 1s
useful for comparing theory to numerical results generated

by the fast Fourler transform.
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FIGURE 1 TYPICAL OFFSHORE STRUCTURES
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FIGURE 2 FLOW NORMAL TC A CYLINDER'S AXIS

This figure shows how Morison's equation is applied for
flow normal to a cylinder's axils.
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FIGURE 3 FLOW IN-LINE WITH A CYLINDER'S AXIS

This figure shows how Morison's equation is applled for
flow in-line with a cylinder's axls.
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FIGURE 4  COORDINATE SYSTEM FOR AIRY WAVE THECRY
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FIGURE 5  RANGE OF VALIDITY OF AIRY WAVE THECRY

(Adapted from Le Mehaute, 1969)
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FIGURE 6 COORDINATE SYSTEM FOR THE CGRID
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FTGURE 7 ALCORITHM FOR GENERATING WAVE KINEMATICS I

This figure describes an algorithm for finding'the wave
kinematics on the mean waterllne.

7x=0.%) > Yo df 1)
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FIGURE 8 ALGCRITHM FOR GENERATING WAVE KINEMATICS IX

This figure describes an algorithm for finding the wave
kinematics below the mean waterline.
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HORIZONTAL WATER-PARTICLE VELOCITY I

This figure shows an Iimpulse response function for
transforming the free—surface elevation into the horizontal
water-particle velocity on the mean waterline in deep water.
The time step 1is .25 seconds. Notice how rapidly the
function approach the time becomes greater than or

less than zero. a7
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FTGURE 10  HORIZONTAL WATER-PARTICLE VELOCITY I1I

This figure shows an lmpulse response function for
transforming the free-surface elevation into the herizeontal
water-particle velocity on the mean waterllne In finite
way®r yepth. The time step is .25 seconds. The water depth
is feet. Even for thls very shallow water depth the
behavfour of the function differs very - llttle from its

behaviour in deep water. ’vo)
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FIGURE 11 VERTICAL ATTENUATICN IN DEEP WATER

This figqure shows the inverse Fourler transform of the
transfer function for modeling vertical attenuaticn in deep
water. This function models the vertical attenuation over a
change in depth of 25. feet.

) e
; { %//L
.._a, HD
ho- 3 Lo 2
To2
2.5Q0
R.40D09.
a.322.4
-
gn.zna_
-
—
L 4
-
=L
w3
~ @.108
e 4
Tad
- 3
B.Rf—p==T7=T 1 ¢ 1 1 1 [ § 1 1 1T 1 11
~1Q.02 -G.0 0.0 €.n

TINE CQEDONDSY




Page F-13

FIGURE 12 VERTICAL ATTENUATION IN WATER IN FINITE DEPTH

This figure shows Iimpulse response functions for
per forming vertical attenuation in water of finite depth in
‘comparison to the same functlon in deep water. The water
depth is 50. feet. 'The distance over which the time series
are attenuated ls 25. feet. The time step 1s .25 seconds.
The graph on the left is the lmpulse response function for
the transfer functlon that contains the hyperbollc cosines.
The graph on the right 1s the lmpulse response functlon for
the transfer functlion that contains the hyperbollic slnes.
The symbolg Tepresent the finite depth results calculated by
using theffast JFourier transform. The solld lines are deep

water theory-
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FIGURE 13 HORIZONTAL PROPAGATION IN DEEP WATER I

This figure shows the lnverse fourler transform of the
rransfer function for horizontal propagation when there is
no cut-off frequency. This functlon models the horizontal

propagation over a distance of 25. feet.
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FIGURE 14 HCRIZONTAL PROPAGATION IN DEEP WATER 11

This figure shows the inverse fourler transform of the
transfer function for horizontal propagation when there is a
finite cut—-off frequency. The cut-off frequency equals 1.
Hz. The distance of propagation is 25. feet.
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FIGURE 15 HORIZCNTAL PROPAGATiON IN FINITE WATER DEPTHS

This figure shows an impulse response function for
performing horizontal propagation in water of finite depth
in comparlison to the same functlon in deep water. The water
depth 1s 30. feet. The tlme step is 0.5 seconds. The
distance of propagation is 25. feet. The symbols represent
the finite depth results calculated by using the fast
Fourler transform. The solid line 1s theory in deep water.
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WAVE ELEVATION IN FEET
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REGULAR WAVE : AMPLITUDE = 00.100 FEET PERICD = 00.30 SEC
2048

t

DT = 0.0625 SEC DEPTH = (004.0 FEET DATA SIZE
GRID IN X DIRECTION HAS 7 POINTS SPACED AT 03,2000 FEET
CRID IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS CCMPUTED AT (006.400,-00.00) FEET
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.09
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~0.03

-0.09

0.15

i ! 1 |

0.00 0.20 0.40 0.60 0.80 1.00
TIME IN SECONDS
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-r

FIGURE 16 : SIMULATED WAVE AT 5 WAVELENGTHS



WAVE ELEVATICON IN FEET
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fi

REGULAR WAVE : AMPLITUDE = 00.100 FEET PERICD 00.5C SEC

2048

DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE
!

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 03.2000 FEET

GRID IN Y DIRECTICN HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT (012.800,-00.00) FEET
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FIGURE 17 : SIMULATED WAVE AT 10 WAVELENGTHS
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REGULAR WAVE : AMPLITUDE = 00.100 EFEET PERIOD = 00.50 SEC
DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 PQINTS IPACED AT 03.2000 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT (019.200,-00.00) FEET
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FIGURE 18 : SIMULATED WAVE AT 15 WAVELENGTHS



WAVE ELEVATION IN FEET

-0.30
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RANDOM WAVE : HEIGHT slg = 00.200 FEET PERIOD sig = 01.00 S:EC
32 FREQUENCY COMPCNENTS WITH MINIMUM = 0.50 HZ MAXIMUM = 1.78 HZ

DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 20438

.GRID IN X DIRECTION HAS 3 POINTS SPACED AT 01.250 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 00.500 FEET

RESULTS COMPUTED AT (002.500,-00.70) FEET
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~-0.10
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L L A 1
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FIGURE 19: SIMULATED OVER 2.5 FEET (1.5 SHCORTEST WAVE LENGTH)



WAVE ELEVATION IN FEET

-0.30

Page F=-21
RANDOM WAVE : HEIGHT sig = 00.200 FEET PERIOD sig = 01.0C SEC
32 FREQUENCY CCMPONENTS WITH MINIMUM = 0.50 HZ MAXIMUM = 1.78 HZ
DT = 0.0625 SEC DEPTH = 004.C FEET DATA SIZE = 2048
GRID IN X DIRECTION HAS 3 POINTS SPACED AT 01.250 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 00.500 FEET

RESULTS CCMPUTED AT (005.000,-00.00) FEET

{ L T T

0.5
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| | i i
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FIGURE 20: SIMULATED OVER 2.5 FEET ( 3.0 SHORTEST WAVE LENGTH)
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RANDOM WAVE : HEIGHT sig = 00.200 FEET PERIOD sig = 21.00C SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.50 HZ MAXIMUM = 1.78 HZ

DT = 0.0625 SEC

DEPTH = C04.0 FEET DATA SIZE

2048

GRID IN X DIRECTION HAS

3 POINTS SPACED AT

01.250 FEET

WAVE ELEVATION IN FEET

CRID IN Y DIRECTION HAS 3 POINTS SPACED AT 00.500 FEET
RESULTS COMPUTED AT (007.500.—00.00) FEET
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FfGURE 21: SIMULATED OVER 7.5 FEET ( 4.5 SHORTEST WAVE LENGTH)
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RANDOM WAVE : HEICHT sig = 20.00 FEET Z2PERIOD sig = 10.00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = (.25 HZ

WAVE ELEVATION IN FEET

DT = 0.0625 SEC

DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 25.000 FEET
RESULTS COMPUTED AT (300.000,—25.00) FEET
on
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FIGURE 22: SIMULATED KINEMATICS ( PARTICLE DISPLACEMENT )
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RANDOM WAVE : HEIGHT sig = 20.00 FEET PERIOD sig = 10.0C SEC

-32 FREQUENCY CCOMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = 0.25 HZ
DT = 0.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 25,000 FEET

RESULTS COMPUTED AT (300.000,-25.00) FEET
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1 | T
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~0. 40 0.40 .20
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FIGURE 23: SIMULATED KINEMATICS ( HORIZONTAL VELOCITY }



VERTICAL VELOCITY IN FEET/SEC
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RANDCM WAVE : HEIGHT slg = 20.00 FEET PERIOD sig = 10.00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = .25 HZ
DT = 0.0625 SEC  DEPTH = 250.0 FEET DATA SIZE = 5048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 25.000 FEET

RESULTS COMPUTED AT (300.000,-25.00) EEET

T ¥ T ¥
CONVCLUTION

2.0

-— —— SUM OF SINES

1.20

40

0.

-0.40

(ot }
N
Tr N
(o ]
[ e ]
f}i 1 1 ] |
0.00 5.00 10.00 15.00 20.00 25.00

TIME IN SECONDS

FIGURE 24: SIMULATED KINEMATICS ( VERTICAL VELOCITY )
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RANDCM WAVE : HEIGHT sig = 20.00 FEET SERTOD sig = 16.00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = 0.25 HZ
DT = 0.0625 SEC DEPTH = 250,0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT  50.000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT  25.000 FEET

RESULTS COMPUTED AT (300.000,-25.00) FEET
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FIGURE 25: SIMULATED KINEMATICS ( HORIZONTAL ACCELERATION )



RANDOM WAVE : HEIGHT slg = 20.00 FEET

PERIOD sig =

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = O

DT = Q.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048
CRID IN X DIRECTICN HAS 7 POINTS SPACED AT 50.000 FEET
GRID IN Y DIRECTICON HAS 3 POINTE SPACED AT 25.000 FEET
RESULTS COMPUTED AT (300.000,—25.03) FEET
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FIGURE 26: SIMULATED KINEMATICS ( VERTICAL ACCELERATION )



| DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE

WAVE ELEVATION IN FEET

-0.08

Page F-28

il

o
O
un
O
v
£
O

REGULAR WAVE : AMPLITUDE = 00.10C FEET PERIOD

1
N
]
e
[0+]

X CRID DETAILS
9 POINTS SPACED AT 0.16 FEET, S=Lc /8, SHOWN BY __. ..
5 POINTS SPACED AT (.32 FEET, S=Lc /4, SHOWN BY ——. —
3 POINTS SPACED AT 0.64 FEET, S=Lc /2, SHOWN BY —1—
Lc = SHORTEST WAVE LENGTH S = GRID SPACING
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT (00.480,-00.00) FEET

(] 1 T T T
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~-0.03

1 L | 1

.00 0.20 0.40 0.60 0.680 "1.00
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FIGURE 27 : EEFECT OF GRID SPACING ON SIMULATIONS
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REGULAR WAVE : AMPLITUDE = 00.100 FEET PERICD CC.50 SEC

DT = 0.1500 SEC DEPTH = 004.0 FEET DATA SIZE = 1024
GRID IN X DIRECTION HAS 3 POINTS SPACED AT  01.2500 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT  05.0000 FEET
RESULTS COMPUTED AT (002.5C0,-00.00) FEET
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FIGURE 28 : UNDERSAMPLING
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WAVE ELEVATION IN FEET

Page P-31

DT = 0.0375 SEC DEPTH = 004.0 FEET DATA SIZE = 2048
CRID IN X DIRECTION‘HAS 3 POINTS SPACED AT 0.8125 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT (001.625,-00.00) FEET
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FIGURE 30 : PROPAGATED AND MEASURED WAVEFCORMS



WAVE ELEVATION IN FEET
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DT = 0.0375 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 0.8125 FEET
. i

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT (001.625,-00.6146) FEET
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FIGURE 31 : PROPAGATED AND MEASURED WAVEFCRMS
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FIGURE 32: INPUT SPECTRUM AT PROBE 1
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FIGURE 33 :
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DT = 0.0375 SEC DEPTH = 004.C FEET DATA SIZE = 2048
GRID IN X DIRECTION HAS 3 POINTS SPACED AT 0.8125 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT (001.625,-00.00} FEET
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FIGURE 34 : PROPAGATED AND MEASURED WAVEFORMS



WAVE ELEVATION IN FEET
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DT = 0.0375 SEC DEPTH = 004.0 FEET DATA SIZE = 2048
GRID IN X DIRECTION HAS 3 POINTS SPACED AT 0.8125 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT (001.625,-00.6146) FEET
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FIGURE 35 : PROPAGATED AND MEASURED WAVEFORMS
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REGULAR WAVE : AMPLITUDE = 10.C0 FEET PERIOD = 14.59 SEC
DT = 0.5 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 125.0C0 FEET
GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 025.000 FEET_

RESULTS COMPUTED AT (250.400,-25.00) FEET
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FIGURE 39 : SIMULATED WAVE WITH STRETCHED LINEAR CORRECTION
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FIGURE 40 ERROR ANALYSIS OF CENTRAL DIFFERENCE METﬁbD

The relatlve error of the central difference method
increases as the number of samples per wave decreases. As
the sampling rate approaches infinity, the relatlve error
error approaches one. As the sampling rate approaches two
samples per wave, the relatlve error goes to zero.
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FIGURE 41 SINUSOIDAL, WAVE CONTAMINATED WITH NOISE
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SINE WAVE CONTAMINATED WITH NQISE
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FIGURE 42 DERIVATIVE OF A WAVE CONTAMINATZID WITH NOISE I

Numerical differentiation amplifies nolse. In fact,
the amplification increases as the number of sample peints
per wave increases. In this case, the central difference
method has been used to evaluate the derlivatlve of the
function plotted in figure J.19. The sampling rate 1s 25
samples per wave. The solid line 1s the derlvative of the
function when it is not contaminated wilth nolse. The
symbols represent the derlvative of the function as
calculated by the central difference method.
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FIGURE 43 DERIVATIVE OF A WAVE CONTAMINATED WITH NOISE II

Numerlcal differentiation amplifies nolse. In fact,
the amplification Increases as the number of sample peints
per wave increases. In this case, the central difference
method has been used to evaluate the derivative of the
function plotted in flgure J.19. The sampling rate is S0
samples per wave. The solid line is the derivative of the
functlion when it is not contaminated with noise. The
symbols represent the derivative of the function as
calculated by the central difference method. Clearly, the
error at this sampling rate is greater than the error at the
lower sampling rate shown on the preceding page.
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TABLE G-1 AIRY WAVE THECRY IN FINITE WATER DEPTHS

L [AX-wE)
Free surface elevation 7:"?? =
) AN
1= whcoshiKiZ4)) ©
Horizontal particle velocity S,
N 51 k/l‘/' ZL
Vertical particle velocity =He -t 5’”’/?%@"”/7@[/ 2/
Sy (54
;= ' b ) o L IAK-E)
Horlzontal particle 1 ti ‘("Vé’"‘d%‘da&ék/ﬁé)é(/
rizontal p acceleration vy .
'-- o w2} [ /é/r{'mz-z-
Vertical particle acceleratica W= Re ~wWA sl em) € /
SHiks) ,
LA =0t

1 t of € Vo e L= )4605/)%/:::’?‘/5,}) e
Dynamic component of water pressure /2 £ oh )

Dispersion relation wh= /?/0 2anbis)
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TABLE G-2 AIRY WAVE THECRY IN DEEP WATER

Free surface elevation 7= Ko Aot (K X-wZ)
Horizontal particle velocity W= /?Ew/!é’ /f'( we)
Vertical particle velocity W= /Pé-/'gw{f = Xz & ‘:/(’Y-MLL)
Horizontal particle acceleration 42-‘— Ke ~uAe A"—Q Mk/y E j
Vertical particle acceleration w= Lo JJ’;,J g’h-‘zg LfA-4IE)

AA- 207
Dynamic component of water pressure 5 7 f;f & A‘FE 4 /

Dispersion relatlon W= /7



