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ABSTRACT

In this report, the simulation of ocean wave kinematics by
digital convolution techniques is presented. In deep water,
the vertical attenuation and horizontal propagation of ocean
waves are solved analytically. In shallow water, the vertical-
attenuation and horizontal-propagation problems are solved usinq
the fast Fourier transform. It is shown that the convolution
integrals required to simulate irregular waves are more efficient
than summing sinusoids. Guidelines for the processing of real
wave data are established. The technique is validated by com-
paring data acquired in a wave tank with the simulated result.
Applications of this method are demonstrated with example
problems.

For information concerning computer programs which implement
these simulation techniques, contact:

Professor J. Kim Vandiver
MlT Room 5-222
Cambridge, MA 02l39
�17! 253-4366



CHAPTER 1

ANALYSIS OF OCEAN WAVES ZN THE TIME DOMAIN

1.1 THE FREQUENCY DOMAIN VERSUS THE TIME DOMAIN

Time � domain analysis can be very useful for the design

of offshore structures. However, time-domain analysis is

not performed very often because the software in use today

is inefficient. Instead frequency-domain analysis is used.

A frequency-domain analysis is made efficient by the many

linearizations that are imposed.. The motions, exciting and

restraining forces, and wave kinematics are linearized to

perform a frequency-domain analysis. But these

linearizations make the frequency domain a worse model of

reality than the time domain because the time domain does

model nonlinearities. Also, physically, the time domain is

a better choice than the frequency domain because natural

phenomena change with time, not with frequency. Both the

frequency domain and time domain have certain advantages and

disadvantages which make the proper choice for analysis

extremely important.
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The response of an offshore structure to a storm is

very nonlinear. Since the frequency domain cannot model

nonlinearities. it cannot model response to storms. It

models the response of an offshore structure under normal

operating conditions. It is best used during preliminary

design, in the early stages of the design spiral. when there

are many possible solutions. It is an efficient and

Together with model tests, the time domain can be a

valuable method of design. If it is used properly. it will

certainly help to avoid accidents such as befell the Ocean

Ranger and Clomar Explorer. This is especiallly important

as the search for oil is extended into deeper and harsher

environments .

Time-domain analysis vill become more attractive as it

becomes more efficient. Its inefficiency leads to very

expensive and extremely long computer simulations. One of

the leading contributors to this inefficiency is the

algorithm which models irregular seas. This paper will

inexpensive vay of eliminating poor design choices. Unlike

the frequency domain, the time domain can model the response

of an offshore structure to a storm. It is best used during

final design, near the end of the design spiral, vhen only

one or two designs are being considered. Poor design

choices that, are not found by a frequency-domain analysis

can be found by a time-domain analysis.
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demonstr ate an e f f icient method for modeling irregular seas .

1. 2 APPLICATIONS OF TIME-DOMAIN ANALYSIS

Time-domain analysis of an offshore structure's

response to ocean waves can identify poor design choices.

Specifically. the ocean engineer is most interested in

preventing structural failure. Other design objectives

include flood prevention. station-keeping ability. and good

seakeeping characteristics. Time-domain analysis can help

meet all of these design objectives. Useful applications of

time-domain analysis include dynamic response of jackets,

hybrid towers, guyed towers. and risers. Other applications

include seakeeping response of semisubmersibles and

tension-leg platforms. As seen in Figure 1, all of these

structures are made of slender cylinders. In general,

Morison's equation can be used to model the dynamic response

of a cylinder to an ocean wave when the cylinder's diameter

is smaller than the wave's length. The application of

Morlson's equation is controversial. Yet, for the problems

we want to solve, Morison's equation gives results which are

in good agreement with experiments.
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hydrodynamic forces acting on all submerged cylinders can be

calculated' Presently. the algorithm used to compute these

quantities is very inefficient. In this paper, a more

efficient method for computing these quantities will be

developed.

1.4 SURLILY OF CHAPTER ONE

used today.

The response of offshore structures to ocean waves can

be anal.yzed in either the frequency domain or time domain.

Frequency-domain analysis is best used during preliminary

design, whereas time-domain analysis is best used during

final design. Time-domain analysis is not used as often as

it should be because it is inefficient, but it can become

more efficient. For certain offshore structures, Morison's

equation can be used to model the hydrodynamic forces.

Presently, the algorithm used to compute the wave properties

required by Norison's equation is very inefficient. A more

efficient method will be developed in this paper. First.

Airy wave theory will be reviewed. Then a theory of

irregular waves will be developed which is based on Airy

wave theory. This theory is more efficient than what is
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RK~& AND IRREGLKN. WAVES

2.1 AIRY WAVE THEORY

Sub]ect to certain limitations, Airy wave theory can be

a very useful model of ocean waves. To understand those

limitations. we must review the theory's derivation. Our

final ob]ective will be a model for irregular waves. Since

irregular waves are a superposition of regular waves, we

will use many Airy waves to simulate irregular waves.

Therefore, the theory of irregular waves which we will

develop will have limitations similiar to those of Airy

waves.

We will define our coordinate system such that the

Z-axis is positive up and the X-axis positive to the right.

E'urthermore, we will fix the origin at the mean waterline

 Figure 4!.
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The first assumption we will make is that the fluid is

inviscid or ideal.

p =o.' �. 1!

vhere ! is the kinematic viscosity. Since we have assumed

an ideal fluid. there will be no energy dissipation due to

viscous damping. This is valid because we are only

interested in vaves that travel short distances in the

neighborhood of the offshore structure. Eor these short

distances. ve do not expect that the viscous damping will

have a significant effect.

The second assumption ve vill make is that the fluid is

incompressible.

�. 2!

The third assumption ve vill make is that the fluid is

irrotational.

�. 3!

is the del operator and g~ is the fluid particlewhere

where g is the density of the fluid. Intuitively, this

seems to be a reasonable assumption. However, it is

possible to model the compressibility of the fluid. In

fact. even for water, compressibility can significantly

affect added-mass and vave-damping calculations.



Page 2 � 3REGULA AND IRREG~W WAVES

velocity vector. This important assumption enables us to

express the velocity field in terms of the gradient of a

scalar function

�. 4!

share g is defined as the velocity potential.

o ~ I

gives a good discussion of irrotational motion:

A deep water swell, i.e., wave generated by
wind traveling out of the generating area. is
probably the motion which most closely approaches
the condition of irrotationality. But under wind
action the free surface shearing stress induces
rotationality  and turbulence! in the direction of
wave travel... Also, in shallow water. the bottom
friction induces rotationality.... Rotationality
at the crest in the direction of wave travel will
reduce the limit wave steepness... Rotationality

the oposite direction will theoretically
increase the limit wave steepness.

By the continuity principle. equal .amounts of fluid

must enter and exit a control volume. Therefore,

in the fluid. �.5!

This equation is called I.aplace's equation. It is the

governing differential equation.

Using these arguments. we expect our theory to become less

valid as the wave becomes steeper and the water shallower.

These are limitations to the theory we propose. However, as

we will soon discover, they are not very strong limitations.
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We must solve Laplace's equation and also satisfy the

free-sur f ace and bottom � boundary conditions. The

bottom-boundary condition is that no fluid can move across

the bottom � the normal component of fluid velocity must be

zero.

on z=-h, �.6!

vhere h is the water depth. This boundary condition does

not allow for sloped bottoms. Hovever. in the neighborhood

of the offshore structure the bottom vill be horizontal.

For rigid, hard. horizontal bottoms. this boundary condition

is exact.

The kinematic boundary condition on the free surface is

that the fluid particles near the free surface can only move

tangentially to the free surface. The nonlinear boundary

condition is

a a-7!= -g-ZPF~ ~ ~~=a.
a~ pZ

on z= P, �.7!

where is

free � surface

the substantial derivative, and g is the

fourth assumption ve have made.! This is a limitation on the

steepness of the waves we can model because ~ and = ared~
uN' ~r

measures of the slope of the wave. It is a much stronger

elevation. This equation can be linearized if

we assume that that. the product of ~~ and L is very small

compared to the other terms in the equation.  This is the
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limitation on steepness than that due to irrotationality.

The linearized kinematic boundary condition on the free

sur face becomes

on z=Q. �.8!

Unlike the ful ly nonlinear boundary condition. the linear

boundary condition is satisfied on the mean waterline.

Since the steepness of the wave is small, the potential, the

free-surface elevation. and their derivatives evaluated on

the free surface can be expanded in a Taylor series

expansion about the mean waterline.

The dynamic boundary condition on the free surface is

that the pressure must be continuous across the free surface

� the water pressure immediately below the free sur face must

be equal to the air pressure immediately above. We can use

Bernoulli's equation to show

j Fg Pg ~gP=w. on z= P, �.9!

-~/ ad on z=O. �. 10!

where P is the acceleration of gravity. Since it is

consistent with our earlier assumption that the slope of the

wave is small, we can neglect the nonlinear terms. Then the

linearized dynamic boundary condition on the free surface

becomes
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This boundary condition is also satisfied on the mean

waterline.

The kinematic and dynamic boundary conditions on the

free surface can be combined into

~~p @gal= o. on xM. �. 11!

This is called the free-surface boundary condition or the

vave equation.

A solution of Laplace's equation vhich satisfies the

bottom and free-surface boundary conditions is

g � gg j~g @os'8  <� P<h!! g

�. 13!

Me can use the dispersion relation to find the speed of a

wave crest.

phasewhere C is called the phase velocity.

where g is the wave frequency, 8 is the wave

number, g is the vave amplitude, and 5 is time.  In

equation �.12! ve have used complex notation. Throughout

this report we will use the symbol rf> to indicate that the

real part must be taken.! Furthermore, the wave frequency

and wave number must satisfy the dispersion relation.
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velocity is a nonlinear function of frequency and wavelength

because

�. 15!P= 2i7/g
where 3 is the wavelength. In general, for the same water

depth, longer waves will travel faster than shorter waves.

This phenomenon is called dispersion, and it explains why

equation 2.13 is called the dispersion relation.

The derivation of Airy wave theory requires us to

assume:

l! the wave's amplitude is much smaller than the

wavelength.

2! the fluid is irrotational,

3! the fluid is ideal, and

0! the fluid is incompressible.

These assumptions limit the type of wave motion we can model

well. Basically, Airy wave theory is not a good model of

steep waves or waves traveling in shallow water. Xn

general. Airy wave theory is a good model of long ocean

waves in a region slightly below the free surface and

slightly above the bottom. Le Mehaute has suggested a range

for which Airy wave theory would be suitable  pjgupe g!
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The results of Airy wave theory for finite and infinite

water depths respectively are summarized in Tables G.l and

G.2, Airy wave theory is the basis for the theory of

irregular waves which will be developed in this paper .

2.2 THEORY OF IRREGULPB. WAVES

Presently, a finite number of regular waves are

superposed to model irregular seas. Each regular wave has a

distinct frequency and random phase. For example, the free

surface elevation in two dimensions is given by

i/%<4- k!~ dg
�. 16!

t?re discreteand undesireable characteristic is

representation of the seastate. Consequently. the

distribution of wave energy is not continuous. Furthermore,

this method does not allow for wave breaking. When a wave

becomes too steep, it will break. Sum of sinusoids can

where N is the number of regular wave components, gy is a

complex wave amplitude with random phase. f$ is a wave

number. g is the distance propagated. AJ~ is a wave

frequency. and g is time. Other wave properties can also

be represented in this manner. This technique is called sum

of sinusoids. It is based on the principle of

superposition. It is inefficient because it requires many

multiplications and additions. Another, less obvious.
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cr cate waves that are so steep they ar e physically

Impossible. This paper will demonstrate an alternative

method to sun of sinusoids whcih is more efficient and gives

a continuous distribution of energy. However, it also does

not allow for wave breaking. Furthermore, since it is based

on Airy wave theory, it is sub]ect to the same limitations

as that theory.

2. 3 SUt4lKWY OF CHAPTER TWO

Sub]ect to certain limitations, Airy wave theory can be

a very useful model of ocean waves. In general, Airy wave

theory is not a good model of very steep waves or waves

very shallow water. Airy wave theory is a good model of

long waves in deep water. Since Airy wave theory is linear.

many regular waves can be superposed to model irregular

seas. As the number of regular waves approaches infinity.

the distribution of wave energy becomes continuous, and the

Fourier series becomes a Fourier transform. In the next

chapter it will be shown how Fourier transforms and

convolution integrals can be used to model waves more

efficiently than sum of sinusoids.,
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3a2 THE CONVOLUTION THEOREM IN THE TIME DOMAIN

water-particle velocity. This relationshlp can be expressed

�. 6!

component, P/Ai!is the horizontal

e transfer function. All of these

ency domain. and in general, they

e expressed ln terms of their

efore, equation 3.6 becomes

>/~! e" o~ �. 7!

where g+j and ZCZJ are real functions in the time domain.

This equation can be rearranged.

w4/= /' 8i~A J ~pg8 g~gZ- �.8!

Having defined the fourier transform and its inverse.

the convolution theorem can now be derived. For example,

suppose we know a transfer function in the frequency domain

which will convert the horizontal component of

water-particle velocity into the vertical component of
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A time series represents a history of events at a

single polnt in space. A time series can be transformed so

that lt represents another time series at the same point ln

space or at a different point in space. Some operations

which do not "move" a time series of ocean waves ln space

and Hilbertinclude differentiation, lntegration,

trans forms.  A Hilber t trans form is a phase shi ft o f

ninety-degrees ln the frequency domain.! The operations

which do "move" a time series through space include vertical

attenuation and horizontal propagation.

A time series of the free-surface will be

convolved with transfer functions to generate time serie of

and '-!and thethe dynamic water

components of water-particle velocity and acceleration.

Transfer functions will also be developed to model the

vertical attenuation and horizontal propagation of ocean

waves. The six time serles that are requlred for a

wave-force analysis will be lmown everywhere ln space and

they will be generated from one time series.

3.4 THE TIME AND WAVE-FREQUENCY DOMAIN

As the number of discrete waves N goes to infinity

while the difference between neighboring wave frequencies

and wave numbers goes to zero, the summation in equation

2.16 approaches its integral representation,
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c Yw~- co' ~J
P= As. ~ f ><WE 8 dW~ �. 12!

1/where gf~uf is a complex amplitude which varies continuous ly

with wave frequency and has a random phase. Equation 2.16

is a Fourier transform in the time and wave-frequency

domain. As long as //I~/has certain properties, we are now

free to use the very powerful tools of Fourier transform

analysis. Specifically, we will be most interested in the

convolution of equation 3.12 with the inverse fourier

transforms of transfer functions which we will develop in

the frequency domain. Those transfer functions will be

based on Airy wave theory.

3.5 THE SPACE AND WAVE-NUMBER DOMAIN

Equation 3.12 can alternatively be expressed as <

*

p= ~ ~ / ~/~is "~
gg -g

where g +f is a complex amplitude which varies continuously

with wave number and has a random phase. Therefore, we can

also express equation �.16! as a Fourier transform in the

space and wave-number domain. Both equations �. 12! and

�.13! have certain advantages and disadvantages.

The disadvantage of equation �.13! is that its inverse

Fourier transform requires an integration alogy the X-axis.

Physically, this is a very difficult thing to do because it
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would require many samples of the ocean wave along a

straight line. However, this method is used to solve the

Cauchy-Poisson problem. The advantage of equation �.12! is

that it represents the free-surface elevation at a single

point in space. In the real world. wave-rider buoys have

been doing this measurement for a long time. But this

model the

over song

method does require long time records to

horizontal propagation of irregular waves

distance&. However, time-domain analysis of offshore

structures will not require us to simulate the propagatio~

of irregular waves over long distances.

~  g~!3

3e6 SUIMVtY OF CHAPTER THREE P~ �

Given a time series of the free-surface elevation at

one point, in space. time series of water particle velocities

and accelerations, and pressure can be generated at other

points in space. The given time series can be either

measured or simulated data.

represent wave kinematics

time-domain simulation. the wave kinematics required by

Morison's equation can be interpolated from the grid. The

convolution integrals necessary to perform this analysis are

usually more efficient than sum of sinusoids.

THE CONTINUOUS SPECTRUM OF OCEAN WAVES

The generated time series can

at points in a grid. During a



CHAPTER 4

TRANSFER FUNCTIONS FOR ANALYSIS OF OCEAN WAVES

4.1 EFFICIENT MODELING OF OCEAN WAVES

For very complicated offshore structures, calculating

the wave kinematics at grid points is more efficient than

calculating wave kinematics for every finite element. This

would be especially true for offshore platforms.  However,

for risers. it is probably more efficient to calculate the

wave kinematics for every finite element instead of a mesh

of points.! In particular. the methods of digital-signal

processing are well-suited for a grid.

The coordinate system we will adopt for the grid is

given in figure 6. The X-axis is positive to the right,

and the Z-axis is positive upwards. The number of grid
P

points along the horizontal is 8, and the number along
rthe ver tical is g . The free surfa-ce elevation at the

upper-left corner of the grid is given. It is requ,ired to

know the wave kinematics at every grid point at each time

step.
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To move from one grid point to another grid point

parallel to the mean waterline will be called horizontal

propagation. To move downward will be called vertical

attenuation.

There are numerous ways to calculate time series of the

wave kinematics at all grid points when the the free-surface

elevation. at one grid point is the only known time series.

However. there are very few good methods. For instance.

uslng one convolution integral to generate the time series

of the horizontal-water particle acceleration at the

bottom-right corner from the time series of the free-surface

elevation at the origin is not very efficient. Xt is not

very efficient because evaluating the convolution integral

would require many mu.ltlplications and additions.

A far more efficient method is to do the convolution

integral ln steps. For instance, use an impulse response

function that models horizontal propagation to move the

free-surface elevation at the left side of the grid to the

right side. This is a very good first step because the

impulse response function that models horizontal propagation

requires many sample points. It is best to do the the

convolution integrals that require the most effort first.

Even though the ultimate goal ls to find the horizontal

water-particle acceleration at the bottom-right corner,

there are many time series that can be calculated at
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intermediate steps. This is what makes this particular

method so efficient. Nov that the free � surface elevation is

known at the right side of the grid, the horizontal

vater-particle velocity at the mean waterline can be found.

The impulse response function that performs this operation

requires fewer sample points than the impulse response

function for horizontal propagation. Then use an impulse

response function that models vertical attenuation to move

the horizontal vater~artlcle velocity at the mean vaterline

dovn to the bottom of the grid. This impulse response

function requlres very fev sample points. To find the

water-particle acceleration, differentiate the

water-particle velocity with respect to time. This

operation requires only two sample points. Therefore. in

addition to calculating the horizontal water-particle at, the

bottom corner. three other time series were calculated at

intermediate steps. Those three other time series were also

required, and they can also be used to generate other time

series within the same column of grid points. This is what

makes this method much more efficient than using one impulse

response function to do horizontal propagatlon, vertical

attenuation, etc. Figures 7 and 8 give the algorithms

used for generating time series in this paper.
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water-particle velocity on the mean waterline from the

free-surface elevation. It is also used to convert

water-particle velocities into accelerations.

The transfer function for converting the free-surface

elevation into the horizontal water-particle velocity on the

mean waterline is

I//~! = /ui/ �. 5!

This transfer function is similiar to a differentiator, but

it does not induce a phase shift.

4e3 THE TRANSFER FUNCTIONS IN MATER OF FINITE DEPTH

+yz'M8 ewe! �. 6}

where dC! is the wave frequency, 8 is the

number, J ia the acceler ation of gravityand,

water depth.

wave

is the

The transfer function for modeling horizontal

propagation is

The transfer functions in water of finite depth are

similiar to those in water of infinite depth. However. one

ma!or difference is the dispersion relation. The dispersion

relation in water of finite depth is
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~~/
z'ann l///g!

�. 11!

4.4 SAMMY OF CHAPTER FOUR

An efficient algorithm for calculating eave kinematics

in a grid has been discussed. The trans fer functions in

eater of infinite and finite depth have been presented. The

resulting impulse response functions vill nor be discussed

in detail.



CHAPTER S

DIFFEPZNTIATING TINK SERIES OF OCEAN WAVES

per f orming this oper ation�.there is no ]u.stifi

However. according ave theory differentiating the

free-sar f ace e leva respect to time gives the

vertical water-particle velocity. Similiarly, time series

of the water particle c elerations can be generated from

bytime ser ies o f the wat

di f fer entiation with respect to time.

5.1 THEORY OF DIFFEREt&IATION OF SINUSOIDAL WAVES

The e~ation for a sinusoidal wave in complex notation

is

A time series of the free-sur face elevation can be

di f ferentiated with respect to time to gener ate a time

ser ies of the vertical water particle velocity. This is

true for both infinite and finite water depths. Physically,
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where N is the frequency and N represents time.

Differentiating this function with respect to time

gives

where 8/Bjis the first derivative of J rz!

5. 2 M2~tICAL DIFFERENTIATION OF SINUSOIDAL WAVES

The approximate derivative of +g as given by the

central difference method is

�. 3!

where gp is the time step and r7 is an index.

As discussed in appendix A, there are two types of

pproximation. The first type

The truncation error is

errors associated

of error is due to

reduced by taking smaller time steps or by using a higher

order differentiator. The second type of error is due to

In this manner, time ser ies o f the vert i ca 1

water-particle velocity on the mean waterline can be

generated from time series of the free � surface elevation.

Similiarly. the horizontal and vertical water-particle

accelerations can be generated from the horizontal and

vertical water-particle velocities respectively.
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noise. This type of error is best eliminated by

Furthermore, this method becomes less accurate as

the number of sample ponts per wave is reduced.

5. 3 SUM%MY OF CHAPTER FIVE

Numerical differentiation is a very efficient method

for generating time series. However, it must be used

carefully because it does amplify noise. ~W ~ 7 6~



CHAPTER 6

THE HORIZONTAL WATER � PARTICLE VELOCITY

A time series of the free-surface elevation can be

differentated with respect to time to generate a time series

of the vertical water-particle velocity on the mean

waterline. This is true in water of either infinite or

finite depth. A time series of the horizontal

water � particle velocity can be generated in a similiar

manner.

6. l HORIZON'WU WATER-PARTI CLE VELOCI TY � DEEP WATER

The disper sion relation in deep water is

�. 1!

where N is the wave frequency, W is the wave number,

and g is the acceleration of gravity.
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functions. However. the fast Fourier transform can be used

to evaluate the Fourler coefficients. Figure l0 compares

the impulse response functions for infinite and finite water

depths. Even though the water depth is very shallow, the

two functions are very similiar. Therefore, the behaviour

of the function for infinite water depth case can be used to

size the function for the finite water depth case.

6.3 SRKiRRY OF CHAPTER SIX

The impulse response function for transforming a time

series of the free-surface elevation into a time series of

the horizontal water-particle velocity on the mean waterline

in deep water has been derived. The impulse response

function for water of finite depth must be evaluated

numerically. However, the theoretical solution for deep

water can be used to size the numerical solution for water

of finite depth.



CHAPTER 7

THE VERTICAL-ATTKICJATION PROBLEM

A point far below the free surface does not feel a

wave's disturbance as much as a point near the free surface.

This phenomenon is called vertical attenuation. According

to Airy wave theory, the vertical attenuation of waves

varies exponentially as a function of the distance from the

free surface.

7.1 VERTICAL ATTE2UATION IN DEEP WATER

The dispersion relation in deep water is

where W is the wave frequency, ~ is the wave number.

and g ia the acceleration of gravity.

The transfer function for vertical attenuation in deep

water is
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where ~2 is the negative distance below the mean waterline.

The inverse Fourier transform of this transfer function

has been derived in appendix C, equation C.15.

�. 3!

PdZ

When the convolution integral is evaluated numerically,

the range of integration should not extend beyond the time

when the amplitude of the function in equation 7.3 becomes

less than a certain tolerance. The time at which this

function is less than a certain tolerance is

/7/� �. 4!

where Q is a fraction of the value of gfPg at +=g..

The corresponding number of sample points is

lv/~ ~ l~p.incd2 f~ �. ~!

where

A plot of this function is given in figure 11. It is

a symmetric function which rapidly approaches zero as the

time becomes large. In fact, the function converges

exponentially.
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for attenuation in deep water case can be used to size the

impulse response functions for the finite water depth case.

7. 3 SVNNPZY OF CHAPTER SEVEN

The inverse Fourier transform for vertical attenuation

in deep water has been derived. The impulse response

functions for water of finite depth must be evaluated

numerically. However, the theoretical solution for deep

water can be used to size the numerical solutions for water

of finite depth.



CHAPTER 8

THE HORI ZONTM -PROPAGATION PROBK EM

A single wave moves horizontally at a rate equal to its

phase velocity. A wave's phase velocity is a function of

the wave's frequency and the water depth. This phenomenon

is called dispersion. The front of a wave group moves at. a

rate equal to its group velocity. For waves traveling over

short distances, the phase velocity is a good measure of a

wave's speed.  The model proposed in this paper does not

simulate group effects.! Given a time history of the

free � surface elevation at a point in space. the free � surface

elevation at neighboring points can be found by convolving

the original time series with the impulse response function

of the appropiate transfer function.

8. l HORIZONTAL PROPAGATION IN DEEP WATER

The disper sion relation in deep water is

2
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where Ã is the wave frequency, W is the wave number,

and J ls the acceleration of gravity.

The trans fer function for horizontal propagation in

deep water is

where 4fgis the positive distance propagated.

The inverse Fourier transform of this transfer function

has been derived in appendix D, equation D.10.

 8. 3!

sher e CPP! and 5/P! are the cosine and sine Fr esnel

integrals.

F.-' 1
Figure . 13 shows that for this function the period of

oscillation becomes smal ler while the amplitude of

oscillation remains constant as the time goes to positive

infinity. As time goes to negative infinity, the function

approaches zero very rapidly. The method o f asymptotics

will now be used to explain these phenomena.

IFE HORIZONTAL-PROPAGATION PROBLEM

jhow�g W.M~ !
!o

 8. 2!



THE HORIZONTAL-PROPAGATION PROBLEM Page 8-3

The cosine and sine Fresnel integrals approach 0.5 as

their arguments go to infinity. Therefore,

8/ag ~

The amplitude of oscillation is constant and the period

of oscillation becomes smaller because of the the argument

of the cosine function is an nonlinear function of time.

This is in agreement with figure 13.

In fact. if one is given the apparent period of

oscillation. the time at which it occurs is given by

~/7 w T j � ~Tgj'
Fdg

 8. 5!

where 7j is the apparent period.

Now solve for the time in terms of the apparent period.

gg dA
g7g Z.

 8. 6!

In particular, if the apparent period is chosen

as gP which is the period of ocillation of a wave sampled

at the nyquist rate. equation 8.5 becomes

 8. 7!

There fore, the time at which the apparent per iod

equals 4Pis directly proportional to the distance

propagated and inversely proportional to the time step. As
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where the funct1cna I, g+ and g,~Pg are de fined ln chapter

seven of Abramowitz and Stegun.

As time goes to negative infinity the cosine and sine

Fresnel integrals approach -0.5. The leading order

behaviour of equation 8.3 is

 8. li!

There fore, the amplitude o f the function is directly

proportional to the distance propagated and inversely

proportional to the time cubed.

When the convolution integral is evaluated numerically,

the range of integration for negative time should not extend

beyond the time when the amplitude of the impulse response

function becomes less than a certain tolerance. The time at

which this function is less than a certain tolerance is

7 ~C 7'><!  W!
where g is a fraction of the value of did' at

The corresponding number of sample points is

 8. 13!

where 7 = 4 JZ





Page 8 � 7THE HORI ZONTAL-PROPAGATION PROBLEM

When the Fast Fourier trnasforn is used to evaluate the

impulse response function,

 8.>6!

There fore.

 8. l7!

convolution integral very little.

8.2 HORIZONTAL PROPAGATION IN WATER OF FINITE DEPTH

The dispersion relation in water of finite depth is

~a = Wg f'un8C&dg  sa ls!

where R is the wave frequency, ~ is the

number, j' is the accelerat|on of gravity, and

water depth.

wave

is the

The transfer function for horizontal propagation in

water of finite depth is

+4!! = ~  8. X9!

where gg is the positive distance propagated.

Consequently. 7~ and 7+ are equal. and the error

caused by the finite cut-off frequency affects the
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This inverse Fourier transform does not have a solution

ln closed form. However. the fast Fourier transform can be
F-i6

used to evaluate it. Figure 1S compares the impulse

response functions for infinite and finite water depths.

Even though the water depth is very shallow, the two

functions are very similiar. At shallower water depths.

Airy wave theory would not be valid. Therefore, the

asymptotic analysis performed for the deep water case can be

used to size the impulse response function for the finite

water depth case.

8. 3 SUI4%UtY OF CHAFTKR EIGHT

An aysmptotic analysis has been made of the inverse

Fourier transforms of the transfer functions for performing

horizontal propagation. The function for deep water has a

closed form solution. The impulse response function for

water of finite depth must be evaluated numerically.

However, the theoretical solution for deep water can be used

to size the numerical solution for water of finite depth.



CHAPTER 9

GUIDELINES

The guidelines for efficient and accurate convolution computations are

discussed here. These guidelines are used to choose parameters that are

necessary inputs for setting up the computation.

9.1 Constraints

Four types of constraints were developed in the formulation of the

technique:

Differentiation: Minimum of 8 samples per period

ii. Horizontal particle velocity: Size of impulse response

iU.. Vertical Attenuation; Size of impulse response

function,

2 Dz lne

a Dt g

iv. Horizontal propagation, size of impulse response function:

For positive real time,

2' Dx
n

S de!
For negative real time,

321/61/2�2 !  Dx! 1
2 g Dt

e ~

where Dt = time increment

Dz = vertical distance of propagation

Dx = horizontal distance of propagation
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g = acceleraticn due to gravity

9 = tolerance

9.2 Phase Error Durin Pro ation

As the waves are propagated. by the convolution process, errors in

phase increase with the distance travelled. For a given propagation

distance Dx, the shortest wave length waves in the time series travel the

greatest number of wave lengths and therefore have the largest likelihood

of building up a phase error. In the programs the user must choose the

largest phase error which can be tolerated for the shortest wave length

waves. 1ife usually use m/4 radians. Let!

cut off frequency

sampling frequency

N = number of sample points

The magnitude and the phase of the transfer function for horizontal

propagation are shown here.

Let R = F /2 F
s c

Let a = Dx/L
C

R must be greater than 1, we
recommend 4

where L is the length of the wave with frequency Fc. The maximum

In the analysis 8, the level of tolerance is set at 0.001; e is the

fraction of the value of the impulse response function at t=0.

The first two constraints do not need any further comment. The

vertical attenuation problem does not give rise to difficulty in the

numerical computation because the transfer function. is essentially an

exponential decay. The horizontal propagation problem can be difficult to

compute and usually dictates the size of computations.
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phase error is

max

2K 6f
Dx

C
8

L

F   � !  � !,
2 ttR Dx c

N c L C
c g

error in the wave nu~ber kHere AK

group velocityC
g

number of sample pointsN

when hQ

16@ Rthen N

m/4,  The maximum phase error is set by the user.!
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9.3 Choice af Parameters

Typically, the analyst is faced with any one of the following

problems:

Given a distance  Dx! and. the cut off frequency of the wave,

Pc, the objective is to select Dt and N. It is recommended that

Dt = Ic/8

so that R=4

where 1/T is the cut off frequency, Fc

Then N = 64 ~

The maximum phase error s,ssociated with this choice is </4

radians.

ii. Given the cut off frequency and. the sise of impulse response

function. The objective is to find out the number of wave lengths over

which the time series can be propagated. Once again

Dt = Tc/8

Dx N

64
C

The maximum phase error associated with this choice is < radians.

iii. Given the distance and the number of points in the

convolution, the objective is to establish the theoretical cut-off

 shortest! wave simulated.

16 RDx

c N

9.4

The convolution method is set up to compute the kinematics at a number

of grid points. Between the grid points a quadratic interpolation scheme
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L
C

is employed. The grid spacing ought to be 8 or less, where Lc

shortest wave length.

When the grid. spacing is less than L /8, then the quadratic
C

interpolator will accurately calculate the kinematics at any location

between the grid points. When the grid spacing is greater than an eighth

of a wave length, a quadratic polynomial does not provide a good

approximation to a sinusoidal curve.

1 . If the grid spacing s is not as per the recommendation, the

intermediate points will show an error in phase.

2. The smaller grid. spacing requires a large number of grid. points and

thus a larger memory is needed for the computations.

9.5 Summar of Cha ter 9

T f
The time step Dg <�

� 8 2fc�

2 The grid si2re should be as small as possible to reduce

memory/computation requirements.

L
c

3. The grid spacing should be less than 8 for accurate

interpolations.

4. For phase error hQ < ~/4
1BSX

Convolution siss N = 16 a R
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5. 1'hase error

If a lower phase error is sought, s, suitably

high N has to be used.



CHAPTER 10

NUMERICAL STUDY

10.1 Introduction

This section presents the results of a study carried out to establish

the accuracy and stability of the numerical solution. The simulation of

ocean waves by convolution has severa1 potential sources of numerical

error. The computed impulse response functions for a finite cut off

frequency are accurate only for a limited range. It has been shown that

the distance  Dx!, time step  Dt!, and size of the convolution must be

chosen so as to have an acceptable level of accuracy in the computed.

results. Furthermore, error gets compounded due to the fact that for a

time stepping operation, computed values at a given instant are used as

inputs for the next time step. This can lead to an unstable solution.

To check stability and accuracy in this section, the results of the

convolution method are compared to the results of an alternative

formulation, the sum of sinusoids, which does not uti1ize convolution.

In al1 of the simulations, the sizes of the convolutions have been

chosen so as to satisfy the requirements laid down in the formulation of

the impulse response functions. The acceptable level of error used here is

c/8  or ~/4 in phase!.

The numerical study is presented as three examples. The first is a

single sinusoidal wave. The second and third are examples of random wave

simulatian.
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10.2 Exam le 1; Re lar Wave

A model scale wave of 0.5 second period and a wave amplitude of 0.1

feet is propagated, 5, 10, and 15 wave lengths, which corresponds to 6.4,

12.8, and 19.5 feet. The wave length is 1 .28 feet. The results are shown

in Figures 16, 17, and IB. The convolution and exact solution are plotted

together. The two time history plots are indistinguishable.

I0.3 Exam le 2: Horizontal Pro a ation of Random Waves

A sum of 5=32 sine waves is used to simulate a model scale random sea

state. The lowest and highest frequency components are 0.5 Hz and 1 .75 Hz,

corresponding to wave lengths of 20 feet and 1.67 feet respectively. These

waves are propagated exactly by sum of aMes techniques and numerically by

convolution distances of 2.5, 5.0, and 7.5 feet. This corresponds to 1.5,

3.0, and 4.5 wave lengths of the shortest wave.

The results are shown in Figures 19, 20, and 21. The results are well

within the desired. accuracy.

10.4 Zxam le 3: Horizontal and Vertical Pro a ation of Random Waves

A sea state with a significant wave height of 20 feet and a mean

period of ten seconds was approximated by a sum of sinusoids. These waves

were propagated exactly and by convolution to a point 300 feet horizontally

and. 25 feet down the water column. At this point kMematics were computed.

The water depth is 250 feet.

Figure 22 shows the water particle vertical displacement or amplitude

at that point assuming linear theory. Figures 23 and 24 show the

horizontal and vertical velocity components for both the exact and
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numerical convolution results. Figures 25 and 26 present the accelerations

in the horizontal and vertical directions. In each case the agreement is

very good. It ia concluded the kinematics convolution techniques are

accurate when the guidelines are followed.

Figures 27 and 28 show the consequences of two common pitfal3.a. One

ia the effect of grid. spacing on interpolation results and the other is

undersampling.

For the generation of kinematics between grid points, a quadratic

interpolation scheme was employed.. This scheme can accommodate a curve

with at most two points of inflection between grid points. It is

recommended that the grid. spacing be less than 1/8 of the shortest wave

length to circumvent this kind. of error. Figure 27 showa the simulated

waves for a grid sPacing of L /8, L //+, and L /2 compared. to an exact

sinusoidal wave. The phase error caused by the interpolation can clearly

be seen here. The error increases for larger grid spacing. In the example

the wave length is 1.28 feet and the propagated. distance is 0.$8 feet or

3/8 of a wave length. The grid syacing of the Lc/8 gives excellent results

because no interpolation is required,, but the coarser grid spacings result

in substantial errors.

In Figure 28, the error is caused by undersampling. A regular wave of

period 0.5 seconds is sampled at 0.15 seconds  c3.early violating the

suggested criterion!, Dt = Tc/8 Figure 28 shows the results of the'

convolution method along with the theoretical aine wave samp3.ad: at the same

interval. Since the nature of the wave form is not correctly defined due

to undersampling, the convolution gives incorrect results.
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Using. numerically simulated waves the convolution method has been

shown to be both stable and accurate when carried out in accordance with

the guidelines presented. Zn the next chapter the propagation of waves

using convolution techniques is compared to the propagation of

experimentally measured waves in a towing tank.



CHAPTER 11

EXPEREMEITAL 8TUDY

The objective of the experimental study was to ascertain the accuracy

of the estimations of horizontal propagation and vertical attenuation fox

real waves, which include measurement noise and wave non-linearities.

Wave data was collected at the M.I.T. towing tank. A typical test set

up is shown in Figure 29. Measurements were made at probes 1 and 2

simultaneously, along with the pressure variation directly under probe 2.

These histories were taped on an anolog tape recorder  Tandberg 100! and

subsequently digitized.. The time history of wave elevation at probe 1 is

the input to the convolution computation, which then predicts propagated.

time history at probe 2. These predictions are then compared with the

measured history at probe 2. The pressure gauge output is scaled to yield

attenuated wave amplitude at that depth. Thus the results of vertical

attenuation can be checked..

11.1 Sinusoidal waves

Initially a sine wave of 0.7 Hz frequency was generated. The wave

height was 0.1 feet. The computed and. measured values of the propagated

wave at probe 2 �.625, 0.0! feet and at the pressure transducer � .625,

-0.6146! feet are plotted in Figures 30 and. 31. The agreement of the

horizontally propagated results  Figure 30! is very good. There is some

error in the vertically attenuated. results. This is attributed to the

error in the positioning of the pressure gauge and the tendency of the

pressure transducer to drift and not due to the convolution.
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11.2 Random waves

Pseudo-random waves were generated in the tank based on a Pierson

Moskowitz Spectrum. The peak frequency was 1.0 Hz and the significant wave

height was 1.25 inches. The water depth was approximately 4 feet. Figures

32 and 33 show typical spectra of the wave data taken at probe 1 and. 2

respectively.  These were computed by a maximum entropy spectral estimator

using 1024 data points!. The spectra show that the highest wave frequency

of interest is 3.0 Hz. There is some difference between the two spectra

 especially at high frequency!, hence a slight discrepancy in the

convolution results may be expected at high frequencies  above 2.00 Ez!.

Figures 34 and 35 present the propagated and measured random waves at

a distance of �.625, 0.0! feet and �.625, -0.6146! feet. This

corresponds to 3 wave lengths of the shortest wave assumed to be present.

The results are in good agreement, except for pressure transducer errors

and. except for high frequency fluctuations, which can be explained by the

discrepancy in the spectral contents as discussed above. High frequency

capillary waves are generated by interaction with the tank walls and

non-linear wave effects.

On the whole, the errors are well within the acceptable limits, and. it

is concluded that real random wave s can be propagated using this technique .

11.3 Sum of Cha ter 11

The convolution method gives accurate results for real wave

propagation problems.
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COMPUTATIONAL ZFPICIEICY

Most uaera consider the time domain analysis as computationally

inefficient and CPU-time consuming. An attempt has been made to gauge the

time/memory required for the time aeries analysis of waves by the

convolution procedure. In all the cases presented here, comparison has

been made with the other time domain alternative, the aum of sinusoids.

In these results both approaches have been used to compute the

kinematics at a number of grid points. These grid points are identical for

both the methods, and the computation for intermediate points is carried

out using an interpolation scheme identical in both the methods. Hence the

results presented here are for equivalent operations.

The exact requirements are system dependent. The results presented.

here are valid for data processed on a VAX 't1/750 machine and were gathered

with a system routine called "getcpu".

12.1 Results

Pigure 38 shows the CFU time required for the computation of wave

kinematics � displacement, 2 velocities, and 2 accelerations! against the

number of frequency components used to model the spectrum. The grid size

is 6x6 and. the duration of the time series was 100 time steps. It ia seen.

that the sum of sinusoids approach needs a linearly increasing time while

the convolution method is independent of the number of frequency

components. The two methods break even at n=16  which is used as a

reference for further studies!. The convolution method. is 7 times faster
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than a 150 component sum of since.

Figure 39 shows the CPU time needed for processing a time series of

increasingly longer duration. For this example, the ~umber of components

was 16 and. the grid size was 6x6. It is seen that for short duration the

convolution approach takes more time than the sum of' since approach, but if

longer histories  involving more than a hundred time steps! are to be

processed, the convolution method is more efficient.

Figure 38 shows the CPU time  in seconds! needed for different grid

sizes. For this example, the number of frequency components was 16, the

break even paint. The number of time steps was 100. Generally for a low

number of grid points the sinusoidal method is mare efficient. But far

larger grid sizes the convolution method. is more efficient. However, it is

also clear that the larger grid size requires larger memory on the system

 regardless of the method!. Typically on. a VAX 11/750, a �x3! grid needed

1250 blocks, a �x6! grid needed $813 blocks, and. a �0x10! grid. needed

13,063 blocks.

12.2 Summa of Cha ter 12

The convolution approach offers substantial advantage when simulating

a large number af sinusoidal components or very long record. lengths. The

grid size alone does not strongly favor either method.



CHAPTER 13

STRETCHED L1NEAR CORRECTION

13.1 introduction

The computation of wave kinematics up to the instantaneous free

surface is carried out using the stretched linear correction. The

formulation of wave kinematics computations subject to this correction is

presented here along with a simple example to demonstrate the resuj.ts.

13.2

Stretched Linear Theor

En the linear water wave theory, the wave kinematics are computed up

to the mean water level  NWL! at any time instant. The typical variation

of the water particle displacement is shown in the figure.  The dotted

Une shows the instantaneous water particle displacement, and "a" is the

wave amplitude.! The adjacent figure shows the stretched. linear

correction, where the variation of the displacement starts with the

instantaneous free surface location. Similar corrections are made to the
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dynamic pressure, velocity and acceleration computations.

This approxi,mation is important in the computation of shear forces and

bending moments on vertical piles. The results with stretched linear

correction will show a higher force and moment at the wave crest and. lower

values under the trough, when compared to the ordinary computation without

the correction.

'I3.3 Formulation

For the stretched linear correct1on, the wave kinematics at any time

instant have to be assigned to the free surface at that instant. The

kinematics below the free surface have to be corrected accordingly.

The transfer function for vertical attenuation is a function of the

distance between the grid point and the free surface so that equation �.2!

will be interpreted as

H  u! = e

where H ~! = transfer function

K = wave number

2< distance of a grid point from the free surface

At any grid point, this distance  Q! will change with every time

increment. The impulse response function corresponding to this transfer

function ought to be recalculated at every time step. This would null the

advantage gained. by the convolution method over the sum of sinusoids.

A solution to this problem lies in computing the impulse response

functions just once, and then letting the grid points move with

the free surface in accordance with the stretched. linear correction.

The convolutions now provide wave kinematics at fixed distances
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beneath the instantaneous ree surface on a moving grid of points. To

obtain the correct kinematics at a fixed, point requires interpolation at

each time step between adjacent moving grid points. For example, a fixed

point a depth Z beneath the NVL has an instantaneous depth Q = Zo < n  t!

with respect to the moving grid. The kinematics « ~ are readilym

available by interpolation.

This formulation lends itself to an easy implementation because the

original structure of the wave kinematics computation creates the impulse

response function just once and is amenable to interpolations over the grid

str ucture.

13.4

The stretched linear correction is demonstrated for a sinusoidal wave.

The particulars for the problem are:

1. wave amplitude 10 feet

2. wave period 14.59 seconds

3. point of propagation �50, -25! feet

water depth 250 feet

5. Dt is chosen as 0.5 seconds.

h s «s c = 14.59 seconds. According to the guidelines,
T

DT
� 8

Therefore, Dt complies with the requirements.

Figure 39 shows the water particle displacement history at the point

of interest. The history predicted by sinusoidal theory  but without

stretched linear correction! i,s plotted on the same curve. This figure

illustrates the effect of the correction. The corrected wave kinematics
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have a higher value at the wave crest  and a lower value at the wave

trough! than the values computed by the computations without the

correction.

13.5 Summar of Cha ter 13

The implementation of stretched linear correction during computation

of wave kinematics using the convolution techniques can be done efficiently

by interpolating within a grid, instead of computing the impulse response

functions at each instant. An example shows the results for the case of a

simple sinusoidal wave.



CHAPTER 14

COlfGIUSIOHS

An alternative to sum of sinusoids has been presented. Instead of a

discrete sum of sinusoids, the pourier transform and convolution integrals

are used to represent a continuous distribution of sinusoids. The method.

proposed in this report is much faster than the sum of sinusoids. A number

of examples for demonstrating the use of this method have been included.

14.1 Limitations of the Pro osed. Method

The proposed. model of ocean waves is linear. It will not model wave

breaking and. other non-linear phenomena. Wave grouping is also not

modelled. The proposed method could, be used to simulate wave apreading,

but it would require assembling many two-dimensional problems. The

proposed method is not good for propagating waves over large distances.

This method of simulating ocean waves will be efficient only when the wave

kinematics need be evaluated at many points. Sum of sinusoids would

probably be more efficient when the wave kinematics are to be evaluated at

fewer points.

14.2 Advanta es of' the Pro osed Method

Unlike sum of sinusoids, the proposed model of ocean waves gives a

continuous distribution of wave energy. In. fact� data taken from a

wave-rider buoy can be used direct+. Alternatively, data generated by an

ARNA model can be used. For very complex offshore structures that would

require the wave kinematics at many points in a grid, the proposed method.

is much more efficient than sum of sinusoids,
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Now calculate the ratio of the approximate derivative

to the exact derivative

Era! = sic c'~~Ad!  A. 7!
~a~ ~al

where gP~! is the relative error. When gPcd! equals one, the

approximate solution is exact. As M approaches zero, the

central difference method becomes a very poor approximation.

pQg P
The relative error is plotted in Figure 40. There is

e.~T<'=W

no error as the frequency goes to zer o. But as the

frequency approaches two samples per wave period, the
a fp

relative error goes to zero. This is called the nyquist

rate. In theory. the highest wave frequency that can be

modeled by the methods of digital-signal processing is the

nyquist frequency. ln practice, the sampling rate should
s>1

never become lower than eight samples per wave period.

yrz~zz! = fre~zs! ~ z z'~a~!

Pri' ddt = Pl+-~>r' + -<~+-~ +!
 A. 8!

where g g'sgP! and /j/WL !represent noise. The formula for the

first derivative then becomes

The derivative of a function contaminated with noise

can have very large errors. Xn fact, the error can go up as

the time step decreases. For instance, suppose ~/~ +dz!

and P/z'-dZ! are contaminated with noise. Then
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THE HORIZONTAL WATER-PARTICLE VELOCITY

The free-surface elevation convolved wlth an impulse

response function gives the horizontal water-particle

gralvelocity on the mean waterline. The convolutio

has the following form:

tb

uczz = J h/2!'1/r&-K~>  s. i!

inverse Courier trans form is not, defined. However. the

F'ourier series solution does exiSt+

This integral can be evaluated numerically as

>Pwgzg = Q +need Ãrwf.' -nckgz&  B. 2!

where gZ ls the time step, and ~ and r7 are indices.

~>/i! and P tj are both sinusoidal functions of time. In

where A/z'! represents the time series of the horizontal

water-particle velocity. Pgj represents the time series of

the free-surface elevation, and +6! ls the inverse

Four ler trans form o f the trans fer function. Xm fact. the
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horizontal. But the Hilbert transform is only inversely

ptopott1onal to~time









Therefore. the constant oZ integration is

Furthermore, the f inal expression for the impulse

response function is

VERTI CAL ATTENUATION

/

Page C � 4

 C. 14!



APPENDlX D

HGRX ZONTAL FROPACATION

For very deep water, the transfer function in the

frequency domain is

Pzg/N!  D. 1!

where Q is the wave frequency, ~ is the wave number,

and 3+is a positive distance over which a wave is going to

be propagated. Since the real part of the transfer function

is even and the imaginary part is odd. the impulse response

function will be a real function of time. The inverse

p/z/ = ~ J jeux/
where 5 represents time. The dispersion relation for

infinite water depth has been substituted for

The integrand can be expanded as

! pp / / ~g g s' d cci!di j~r@p s try' ~2sow�w;gg!

isis' u s'd< a 6' ! co-'v!~ ~-~<<i:~> +'~!~g;zr~g g~  D.3!

Fourier transform of the transfer function is give by

Wp. g>
xj
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 D. 4!

This integral is similiar to the indefinite integral

given below.

j cps  ay ~ 2 6N + < ! gg  D. 5!

This integral can be arranged as

<P~c<N o ~' 'fd 5 !! p'N

The expansion of the integral is

z- ~! /gary ~ <k ~o ~q~d' 2 c !
c2

+grW Y~~d! ! ~i~<�~-2c!J gg
 D. 7!

This integral can be expressed as

cps ~~/~ ~+gggpuy ~d-«glaran!

 D. 8!

As expected. the imaginary part of the integrand is an

odd function of frequency, and it will not make a

contribution to the inverse 2'ourier transform. The Fourier

transform can now be expressed as
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F I GU RE j. TYPICAL OFFSHORE STRUCTURES
Page p-2
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F T. G URE 2 E'LOW NORSE TO A CYLINDER ' S AXIS

This figure shows how Norison's equation is applied for
flow normal to a cylinder's axis.
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F I GU RP 3 FLOW IN-LIKE WITH A CYLINDER ' S AXIS

This Figure shows how Morison's equation is applied for
flow in-line with a cylinder's axis.
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@FIGURE p COORDINATE SYSTEM FOR AIRY WAVE THEORY
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 Adapted from Le Mehaute. 1969!
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h
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FIGURE S RANGE OF VALIDITY OF AIRY WAVE THEORY
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FE GURE 6 COORDINATE SYSTEM FOR THE GRID
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HORIZONTAL 'rlATER-PARTICLE VELOCI'ZY I

This figure shows an impulse response function for
transforming the free-surface elevation into the horizontal
water-particle velocity on the mean waterline. in deep water.
The time step is .25 seconds. Notice how rapidly the
function approa h th time becomes greater than or
less than zero.
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F I G U RE 10 HORIZONTAL WATER-PARTICLE VELOCITY I I

This figure shows an impulse response function for
transforming the free-surface elevation into the horizontal
water-particle velocity on the mean waterline in finite
wa, r epth. The time step is .2S seconds. The water depth
is 25. feet. Even for this very shallow water depth the
be our of the function differs very - little from its
behaviour in deep water.
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F'I G PRE 1 j. VERTICAL ATTENUATION IN DEEP WATER

This figure shows the inverse Fourier transform of the
trans fer function for modeling vertical attenuation in deep
water. This function models the vertical attenuation over a
change in depth of 25. feet. g 2

5«!= ~ !>

R.4



FIGL'RE 12 VERTICAL ATTENUATION IN MATER IN FINITE DEPTH

This figure shows impulse response functions for
performing vertical attenuation in water of finite depth in
comparison to the same function in deep water. The water
depth is SO. feet. ' The distance over which the time series
are attenuated is 25. feet. The time step is .2S seconds.
The graph on the left is the impulse response function for
the transfer function that contains the hyperbolic cosines.
The graph on the right is the impulse response function for
the transfer function that contains the hyperbolic sines.
The symbol resent the finite depth results calculated by
using the Fourier transform. The solid lines are deep
water theo

jI I~! � ~II lk hw>g

5
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~~G~'~E >~ HORIZONTAL PROPAGATION lN DEEP WATER I

This figure shows the inverse fourier transform of the
transfer function for horizontal propagation when there is
no cut-off frequency. This function models the horizontal
propagation over a distance of 25. feet.

a.
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FT.GURE 1+ HORIZONTAL PROPAGATION IN DEEP WATER lI

This figure shows the inverse fourier transform of the
transfer function for horizontal propagation when there is a
finite cut � .off frequency. The cut � off. frequency equals l.
Hz. The distance of propagation is 25. feet.
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~ > ~U R R 15 HORIZONT~ PROPAGATION lN EINI TE WATER DEPTHS

e.

Q.C

m.a m.o e.a

Tree cceccmasi

8.0 1Z.g

This figure shows an impulse response function for
performing horizontal propagation in water of finite depth
in comparison to the same function in deep water. The water
depth is 50. feet. The time step is 0.5 seconds. The
distance of propagation is 25. feet. The symbols represent
the finite depth results calculated by using the fast
Fourier transform. The solid line is theory in deep water.
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hl
UJ

H 0

C!
M

Fl

O O
I

0.00 0.40

TIME IN sECor~OS

FIGURE l6: SIMULATED WAVE AT 5 WAVELENGTHS

REGULAR WAVE : AMPLITUDE = 00.100 FEE PEFIGD = 00-50 SEC

DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GR1D 1N X DIRECTION HAS 7 POINTS SPACED AT 03.2000 FEET

GR1D IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT {006.400.-00.00! FEET
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DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 03.2000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT �12.800,-00.00! FEET
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cD 0.00 1.00O.BO0.600.400.20

TEME IN SECONDS

FIGURE 17: SIMULATED WAVE AT 10 WAVELENGTHS

REGULAR WAVE : AMPLITUDE = 00.100 FEET PER OD = 00.50 SEC
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ODOM WAVE ; MIGHT sig = 00.200 FEET PERIOD sig = G .GG SEC

DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 2008

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 01.250 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 00.500 FEET

RESULTS COMPUTED AT �02.500,-00.~'3! FEET

LLI
LU

o

Z

C!

C!

! O
l

UJ

o p!

O f

C3

ill 0.00
5.002.00 3.00

TIME j:N SECONDS

i.00

FIGURE 19: SIMULATED OVER 2.5 FEET �.5 SHORTEST WAVE LENGTH!

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.50 HZ MAXIMUM = 1.78 HZ
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O

LLf
UJ

o
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c

! O

UJ

LL1
v!

O

O IA

O O.OO i.00 2.0Q 3.00 4.QQ 5.00

TIME j:N sEcoNUs

FIGURE 20: SIMULATED OVER 2.5 FEET   3.0 SHORTEST WAVE LENGTH!

~OM WAVE: HEIGHT sig = 00.200 FEET r ERIOD sig = 01,00 SEC

32 FREQUENCY COMPONENTS WITH M!NIMUM = 0.50 HZ MAXIMUM = 1.78 HZ

DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 01.250 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 00.500 FEET

RESULTS COMPUTED AT �05.000.-00.00! FEET
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TIME IN SEcQNDs

4.00 4.00

FIGURE 2j.: SIMULATED OVER 7.5 FEET   4.5 SHORTEST WAVE LENGTH!

RANDOM WAVE : HEIGHT sig = 00.200 FEET PERIOD slg = 01.00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.50 HZ MAXIMUM = l.78 HZ

DT = 0.0625 SEC DEPTH = G04.0 FEET DATA SIZE = 2008

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 01.250 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 00.500 FEET

RESULTS COMPUTED AT �07.500,-00.00! FEET
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DT = 0.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 25.000 FEET

RESULTS COMPUTED AT �00.000,-25.00! FEET
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FIGURE 22: SIMULATED KINEMATICS   PARTICLE DISPLACEMENT !

RANDOM WAVE : HEIGHT sig = 20.0Q FEET PERIOD sig = IQ.QQ SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAX1MUM = 0.25 HZ
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0.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

IN Y DIRECTION HAS 3 POINTS SPACED AT 2S.QQQ FEETGRID

RESULTS COMPUTED AT �00.000,-25.00! FEET
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0.00 5.00 25.0010.00 15.00

TIME IN SECONOS

FIGURE 23: SIMULATED KINEMATICS   HORIZONTAL VELOCITY !

RANDOM WAVE : HEIGHT sig = 20.00 FEET PERIOD sig = 10.00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = 0.25 HZ
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RAZZ!OM WAVE : HEIGHT s1g = 20-00 FEET PERIOD sig = 10.00 SEC

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 25.000 FEET

RESULTS COMPUTED AT {300.000,-25.00! FEET
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FIGURE 24: SIMULATED KINEMATICS   VERTICAL VELOCITY !

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAX1MUM = 0.25 HZ
I

DT = 0.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048
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RAtZ!OM WAVE : HEIGHT sig = 20.00 FEET PERIOD sag = 10.00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = 0.25 HZ

DT = 0.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

GR1D IN Y DIRECTION HAS 3 POINTS SPACED AT 25.000 FEET

RESULTS COMPUTED AT �00.000, � 25.00! FEET
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FIGURE 25: SIMULATED KINEMATICS   HORIZONTAI. ACCELERATION !
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RANDOM WAVE : HEIGHT sag = 20.00 FEET PERIOD sig = '0 00 SEC

32 FREQUENCY COMPONENTS WITH MINIMUM = 0.05 HZ MAXIMUM = 0.25 HZ

DT = 0.0625 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 7 POINTS SPACED AT 50.000 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 25.000 FEET

RESULTS COMPUTED AT �00.000, � 25,00! E. ET
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EIGURE 26: SIMULATED KINEMATICS   VERTICAL ACCELERATION !
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X GRID DETAILS

9 POINTS SPACED AT 0.16 FEET, S=Lc /8, SHOWN BY

5 POINTS SPACED AT 0.32 FEET, S=Lc /4. SHOWN BY

3 POINTS SPACED AT 0.64 FEET, S=Lc /2, SHOWN BY

Lc = SHORTEST WAVE LENGTH S = GRID SPACING

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT �0.480,-00.00! FEET
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TrME IN sELGNOs

FIGURE 27 : EFFECT OF GRID SPACING ON SIMULATIONS

REGULAR WAVE : AMPLITUDE = 00.100 FEET PERIOD = 00.5G SEC

DT = 0.0625 SEC DEPTH = 004.0 FEET DATA SIZE = 2048
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SINE CONVOLUTION

IJJ
LLI
IJ

M 0

o
M

0
! 0 i

IJJ

L0
o
OI

0 6 f.7 2.3
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2.9 3 d d l3

FIGURE 28: UNDERSAMPL ING

REGULAR NAVE : AMPLITUDE = 00.100 FEET PERIOD = 00.50 SFC

DT = 0.1500 SEC DEPTH = 004.0 FEET DATA SIZE = 1024

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 01.2500 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 05.0000 FEET

RESULTS COMPUTED AT �02.500,-00.00! FEET
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DT = 0.0375 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 0.8125 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT �01.625,-00.00! FEET
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FIGURE 30: PROPAGATED AND MEASURED' NAVEFORMS
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0.8125 FEET

0.6146 FEET

GRID IN X DIRECTION HAS 3 POINTS SPACED AT

GRID IN Y D1RECT10N HAS 3 POINTS SPACED AT

RESULTS COMPUTED AT �01.625.-00.6106! FEET
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F1GURE 31: PROPAGATED AND MEASURED WAVEFORMS

DT = 0.0375 SEC DEPTH = 004.0 FEET DATA SIZE = 2048
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FREO., HZ8.8888

HEM SPECTRAL ESTXMATE

E'IGURE 32: INPUT SPECTRUM AT PROBE 1
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FIGURE 33 : INPUT SPECTRUM AT PROBE 2
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NEASURED
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H o I $
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TIME j; N SEI:ONUS

1.50 6.00

FIGURE 34: PROPAGATED AND MEASURED WAVEFORMS

DT = O.CI375 SEC DEPTH = 000.0 r EET DA A SIZE = 2068

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 0.8125 FEET

GRID IN Y DIRECTION HAS 3 P01NTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT �01.625.-00.00! FEET
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DT = 0.0375 SEC DEPTH = 004.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 0.8125 FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 0.6146 FEET

RESULTS COMPUTED AT �01.625,-00 ' 6146! FEET
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FIGURE 35: PROPAGATED AND MEASURED WAVEFORMS



Page F-37

a
PJ

OOE ooz oo>

SGN033S NI 3NIl flc}3

V3'

CD Z

O 0

h
a O

CC
Lu
CQ

CD



Pa.ge

'0'OG

SQN003S NI 2NIl fld3

0
CD

lg



Page

CD
CD

OO P00 06 00'09 00'OE

SQN033S NI 2NI 1 OdD

o CD
CU

o

C7

CC
CQ

o
o

C3

U3
o
O Z

C3
0

C3
o
o

LLl
cv CG



Page F-40

REGULAR WAVE : AMPLITUDE = 10.00 FEET PERIOD = ' 4.59 SEC

DT = 0.5 SEC DEPTH = 250.0 FEET DATA SIZE = 2048

GRID IN X DIRECTION HAS 3 POINTS SPACED AT 125.QQQ FEET

GRID IN Y DIRECTION HAS 3 POINTS SPACED AT 025.000 FEET

RESULTS CONFUTED AT �50.4QQ.-25.00! FEET
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FIGURE 39: SIMULATED WAVE WITH STRETCHED LINEAR CORRECTION
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FIGURE 40 ~OR ANALYSIS OF CENTI'RiV DIFFZRZNCE HETHCD

The relative error of the central difference method
increases as the number of samples per wave decreases. As
the sampling rate approaches infinity. the relative error
error approaches one. As the sampling rate approaches two
samples per wave, the relative error goes to zero.
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FIGURE 4l SINUSOIDAL WAVE CONTAMINATED WITH NOISE
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F1GURE 42 DERIVATIVE OF A WAVE CONTAMINATED WITH NOISE I

Numerical di f ferentiation ampl i f ies noise. In fact,
the amplification increases as the number 'of sample points
per wave increases. In this case. the central difference
method has been used to evaluate the derivative of the
function plotted in figure J.19. The sampling rate is 25
samples per wave. The solid line is the derivative of the
function when it Xs not contaminated wi.th noise. The
symbols represent the derivative of the function as
calculated by the central difference method.
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FIGURE 43 DERIVATIVE OE' A WAVE CONTAMINATED WITH NOISE II

Numerical differentiation amplifies noise. In fact,
the amplification increases as the number of sample points
per wave increases. In this case, the central difference
method has been used to evaluate the derivative of the
function plotted in figure J.19. The sampling rate is 50
samples per wave. The solid line is the derivative of the
function when it is not contaminated with noise. The
symbols represent the derivative of the function as
calculated by the central difference method. Clearly, the
error at this sampling rate is greater than the error at the
lower sampling rate shown on the preceding page.
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TABLE G-j. AIRY NAVE THEORY IN FINITE NATER DEPTHS

s f8''-el<!
Free surface elevation

srnnr~ig
Horizontal particle velocity

Vertical particle velocity

g wx-~~~!!9Horizontal particle acceleration

+=a% -R8S'rr7r> ii~p! g ~Vertical particle acceleration

Dispersion relation

Dynamic component of water pressure /y = A'jg~
a Shkgg

= ~y z'ap$rw>g



Page G-3

Free surface elevation

Horizontal particle velocity

Vertical particle velocity

Vertical particle acceleration

+2 ZpiiN ~HZ!Dynamic component of eater pressure >8= 88pgff 4

Dispersion relation

TABLE G-2 AlRY WAVE THEORY IN DEEP WATER

Horizontal particie acceleration

g+f, Ptf g-cd/!


